logo

Nanogenerators as a Sustainable Power Source

PDF Publication Title:

Nanogenerators as a Sustainable Power Source ( nanogenerators-as-sustainable-power-source )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

Nanomaterials 2019, 9, 773 8 of 35 Pham et al. (2012) applied a simple thermal annealing treatment to the pristine ZnO nanorods in the presence of UV light and found the output piezoelectric potential was 25 times higher [39]. Later in 2012, Zhu et al. demonstrated vertically integrated position-controlled piezoelectric ZnO nanowires that convert biomechanical energy into electrical energy with a high-level open-circuit voltage of 58 V, short circuit current of 134 μA, and a maximum power density of 0.78 W/cm3 [18]. Hu et al. (2012) improved the performance of the nanogenerators by using pretreatment methods like oxygen plasma, annealing air, and surface passivation with specific polymers on the grown ZnO nanowire films. The nanogenerator’s output voltage reached 20 V and the output current exceeded 6 μA [35]. This nanogenerator successfully powered an automatic watch for more than 1 min (for 1000 cycles of deformation of nanogenerator). Zhou et al. (2012), for the first time, demonstrated the energy-harvesting potential and piezotronic effect in vertically aligned CdSe nanowire arrays [40]. Platinum is used as an electrode when a reasonable force or stress is applied on the nanowire with a maximum output voltage of 137 mV. The Schottky barrier between the platinum and the CdSe reduces the current. Han et al. (2013) presented an innovative three-dimensional r-shaped hybrid NG design based on piezoelectric and triboelectric energy harvesting [41]. The output performance of the device was enhanced by fabricating micro- or nanoscale devices on a polydimethylsiloxane (PDMS) surface, which was placed under an aluminum electrode on PVDF. The Al electrode was shared in common by both the piezoelectric and the triboelectric component. The piezoelectric and triboelectric generators exhibited an increased power density of 10.95 mW/cm3 and 2.04 mW/cm3, respectively. The hybrid r-shaped design showed relatively high reliability, as its performance was not degraded over 6000 continuous cycles under an external force with a frequency of 10 Hz. Lithium-doped ZnO nanowires are used in large-scale nanogenerators for high performance [38,42]. Lu et al. (2015) [43] utilized Au particles on the surface of the ZnO to reach an output voltage of 2 V and a current density of 1 μA/cm2. Ghosh and Mandal (2016) highlighted the intrinsic piezoelectric property in transparent fish scale, which is composed of self-assembled and ordered collagen nano-fibrils, and serves as a self-poled piezoelectric active component with a piezoelectric strength of −5.0 pC/N [44]. A robust nanogenerator is fabricated by using gold electrodes of 90 nm thickness on both sides of the fish scale by sputtering followed by lamination with polypropylene film. This type of bio-piezoelectric nanogenerator under the repeated compressive stress of 0.17 MPa generates an output voltage of 4 V, short circuit current of 1.5 μA, and maximum output power density of 1.14 μW/cm2. An enhanced output voltage of 14 V was obtained by serially integrating four of these bio-piezoelectric nanogenerators. HaiBo et al. (2017) found that polymorphic phase sodium-potassium niobate (NKN) nanorods have the most significant piezoelectric strain constant (175 pm/V) as they have more directions for dipole rotation than the nanogenerators with rhombohedral or orthorhombic nanorods [45]. Their experiment, using 0.7 g of PP (polymorphic phase) NKN nanorods, showed a maximum open-circuit voltage of 35 V and a short circuit current of 5.0 at a strain of 2.13% and an average strain rate of 3.7% s−1. This nanogenerator generates a maximum power output of 16.5 μW for a load of 10 MΩ. Chen et al. (2017) proposed a flexible piezoelectric nanogenerator based on a vertically aligned nanocomposite micropillar array of polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE))/barium titanate (BaTiO3), which exhibits an enhanced voltage of 13.2 V and a current density of 0.33 μA/cm2 [46]. Upon the application of a force of 3 N at a frequency of 5 Hz, a flexible PENG based on barium titanate embedded polyvinylidene difluoride (i.e., BaTiO3/PVDF) composite film exhibited a high output voltage of 14 V and short circuit current of 0.96 μA [47]. Shi et al. (2018) fabricated a PENG by using electrospun nanocomposite fibre mats composed of 0.15 wt% graphene nanosheets and 15 wt% barium titanate nanoparticles, which generates a steady electric power of 11 V and 4.1 μW at a load frequency of 2 Hz and a strain of 4 mm even after 1800 cycles [48]. The PENG also generates a peak voltage of 112 V during a finger pressing–releasing process, which is capable of powering 15 LEDs and a watch.

PDF Image | Nanogenerators as a Sustainable Power Source

nanogenerators-as-sustainable-power-source-008

PDF Search Title:

Nanogenerators as a Sustainable Power Source

Original File Name Searched:

nanomaterials-09-00773-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP