logo

S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle

PDF Publication Title:

S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle ( s-co2-brayton-cycle-coupled-with-orc-as-bottoming-cycle )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 022

Energies 2020, 13, 2259 22 of 24 6. Guo, Z.; Zhao, Y.; Zhu, Y.; Niu, F.; Lu, D. Optimal design of supercritical CO2 power cycle for next generation nuclear power conversion systems. Prog. Nucl. Energy 2018, 108, 111–121. [CrossRef] 7. Padilla, R.V.; Soo Too, Y.C.; Benito, R.; Stein, W. Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy 2015, 148, 348–365. [CrossRef] 8. Padilla, R.V.; Benito, R.G.; Stein, W. An Exergy Analysis of Recompression Supercritical CO2 Cycles with and without Reheating. Energy Procedia 2015, 69, 1181–1191. [CrossRef] 9. Glatzmaier, G.C.; Turchi, C.S. Supercritical CO2 as a Heat Transfer and Power Cycle Fluid for CSP Systems. In Proceedings of the ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences, San Francisco, CA, USA, 19–23 July 2009; pp. 673–676. 10. Hinze, J.F.; Nellis, G.F.; Anderson, M.H. Cost comparison of printed circuit heat exchanger to low cost periodic flow regenerator for use as recuperator in a s-CO2 Brayton cycle. Appl. Energy 2017, 208, 1150–1161. [CrossRef] 11. Sharan, P.; Neises, T.; Turchi, C. Thermal desalination via supercritical CO2 Brayton cycle: Optimal system design and techno-economic analysis without reduction in cycle efficiency. Appl. Ther. Eng. 2019, 152, 499–514. [CrossRef] 12. Park, J.H.; Park, H.S.; Kwon, J.G.; Kim, T.H.; Kim, M.H. Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors. Energy 2018, 160, 520–535. [CrossRef] 13. Li, H.; Zhang, Y.; Zhang, L.; Yao, M.; Kruizenga, A.; Anderson, M. PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle. Int. J. Heat Mass Transf. 2016, 98, 204–218. [CrossRef] 14. Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO 2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [CrossRef] 15. Musgrove, G.; Sullivan, S.; Shiferaw, D.; Fourspring, P. Heat exchangers. In Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 217–244. 16. Jiang, Y.; Liese, E.; Zitney, S.E.; Bhattacharyya, D. Optimal design of microtube recuperators for an indirect supercritical carbon dioxide recompression closed Brayton cycle. Appl. Energy 2018, 216, 634–648. [CrossRef] 17. Jiang, Y.; Liese, E.; Zitney, S.E.; Bhattacharyya, D. Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles. Appl. Energy 2018, 231, 1019–1032. [CrossRef] 18. Chen, J.; Liu, Y.; Lu, X.; Ji, X.; Wang, C. Designing heat exchanger for enhancing heat transfer of slurries in biogas plants. Energy Procedia 2019, 158, 1288–1293. [CrossRef] 19. Pidaparti, S.R.; Anderson, M.H.; Ranjan, D. Experimental Investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for Supercritical CO2 power cycles. Exp. Ther. Fluid Sci. 2019, 106, 119–129. [CrossRef] 20. Colonna, P.; van Putten, H. Dynamic modeling of steam power cycles. Part I-Modeling paradigm and validation. Appl. Ther. Eng. 2007, 27, 467–480. [CrossRef] 21. Van Putten, H.; Colonna, P. Dynamic modeling of steam power cycles: Part II—Simulation of a small simple Rankine cycle system. Appl. Ther. Eng. 2007, 27, 2566–2582. [CrossRef] 22. Chien, N.B.; Jong-Taek, O.; Asano, H.; Tomiyama, Y. Investigation of experiment and simulation of a plate heat exchanger. Energy Procedia 2019, 158, 5635–5640. [CrossRef] 23. Liu, Y.; Wang, Y.; Huang, D. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy 2019, 189, 115900. [CrossRef] 24. Mohammadkhani, F.; Shokati, N.; Mahmoudi, S.M.S.; Yari, M.; Rosen, M.A. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles. Energy 2014, 65, 533–543. [CrossRef] 25. Turchi, C.S.; Ma, Z.; Neises, T.; Wagner, M. Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for High Performance Concentrating Solar Power Systems. In Proceedings of the ASME 2012 6th International Conference on Energy Sustainability Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, San Diego, CA, USA, 23–26 July 2012; pp. 375–383.

PDF Image | S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle

s-co2-brayton-cycle-coupled-with-orc-as-bottoming-cycle-022

PDF Search Title:

S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle

Original File Name Searched:

energies-13-02259-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP