PDF Publication Title:
Text from PDF Page: 014
Processes 2020, 8, 1461 14 of 18 prototypes, broader scales of the s-CO2 cycle should be further developed to fill gaps in the current commercial market. Author Contributions: Conceptualization, L.L. and G.C.; methodology, L.L. and Q.Y.; software, L.L.; validation, L.L.; investigation, L.L.; resources, L.L. and Q.Y.; data curation, L.L. and Q.Y.; writing—original draft preparation, L.L.; writing—review and editing, Q.Y. and G.C.; visualization, L.L.; supervision, G.C.; project administration, G.C.; funding acquisition, G.C. and Q.Y. All authors have read and agreed to the published version of the manuscript. Funding: This research received no external funding Conflicts of Interest: The authors declare no conflict of interest. References 1. Formann, C.; Muritala, I.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016, 1, 1568–1579. [CrossRef] 2. Xu, Z.; Wang, R.; Yang, C. Perspectives for low-temperature waste heat recovery. Energy 2019, 176, 1037–1043. [CrossRef] 3. Lu, H.; Price, L.; Zhang, Q. Capturing the invisible resource: Analysis of waste heat potential in Chinese industry. Appl. Energy 2016, 161, 497–511. [CrossRef] 4. Hong, G.; Pan, T.; Chan, D.; Liu, I. Bottom-up analysis of industrial waste heat potential in Taiwa. Energy 2020, 198, 117393. [CrossRef] 5. Yong, Z.; Bashir, M.; Ng, C.; Sethupathi, S.; Lim, J.; Show, P. Sustainable waste-to-energy development in malaysia: Appraisal of environmental, financial, and public issues related with energy recovery from municipal solid waste. Processes 2019, 7, 676. [CrossRef] 6. Galanis, N.; Cayer, E.; Roy, P.; Denis, E.; Désilets, M. Electricity generation from low temperature sources. J. Appl. Fluid. Mech. 2009, 2, 55–67. 7. Sun, F.; Li, J.; Fu, L.; Li, Y.; Wang, R.; Zhang, S. New configurations of district heating and cooling system based on absorption and compression chillers driven by waste heat of flue gas from coke ovens. Energy 2020, 193, 116707. [CrossRef] 8. Hsua, C.; Lin, T.; Liang, D.; Lai, C.; Chen, S. Optimization analysis of waste heat recovery district cooling system on a remote island: Case study Green Island. Energy Convers. Manag. 2019, 183, 660–670. [CrossRef] 9. Liao, G.; Jiaqiang, E.; Zhang, F.; Chen, J.; Leng, E. Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas. Appl. Energy 2020, 266, 114891. [CrossRef] 10. Lin, S.; Zhao, L.; Deng, S.; Ni, J.; Ma, M. Dynamic performance investigation for two types of ORC system driven by waste heat of automotive internal combustion engine. Energy 2019, 169, 958–971. [CrossRef] 11. Wang, M.; Deng, C.; Wang, Y.; Feng, X. Exergoeconomic performance comparison, selection and integration of industrial heat pumps for low grade waste heat recovery. Energy Convers. Manag. 2020, 2071, 112532. [CrossRef] 12. Han, X.; Zou, H.; Jiang, W.; Tian, C.; Huang, G. Investigation on the heating performance of the heat pump with waste heat recovery for the electric bus. Renew. Energ. 2020, 152, 835–848. [CrossRef] 13. Johnson, I.; Choate, W.; Davidson, A. Waste Heat Recovery. Technology and Opportunities in US Industry; BCS, Inc.: Laurel, MD, USA, 2008. 14. Zhai, H.; An, Q.; Shi, L.; Lemort, V.; Quoilin, S. Categorization and analysis of heat sources for organic Rankine cycle systems. Renew. Sustain. Energy Rev. 2016, 64, 790–805. [CrossRef] 15. Manente, G.; Toffolo, A.; Lazzaretto, A.; Paci, M. An Organic Rankine Cycle off-design model for the search of the optimal control strategy. Energy 2013, 58, 97–106. [CrossRef] 16. Quoilin, S.; Aumann, R.; Grill, A.; Schuster, A.; Lemort, V.; Spliethoff, H. Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles. Appl. Energy 2011, 88, 2183–2190. [CrossRef] 17. Wang, T.; Zhang, Y.; Zhang, J.; Peng, Z.; Shu, G. Comparisons of system benefits and thermo-economics for exhaust energy recovery applied on a heavy-duty diesel engine and a light-duty vehicle gasoline engine. Energy Convers. Manag. 2014, 84, 97–107. [CrossRef] 18. Pandis, P.; Papaioannou, S.; Siaperas, V.; Terzopoulos, A.; Stathopoulos, V. Evaluation of Zn- and Fe-rich organic coatings for corrosion protection and condensation performance on waste heat recovery surfaces. Int. J. Therm. Fluid. 2020, 3, 100025. [CrossRef]PDF Image | s-CO2) Power Cycle for Waste Heat Recovery
PDF Search Title:
s-CO2) Power Cycle for Waste Heat RecoveryOriginal File Name Searched:
processes-08-01461.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)