PDF Publication Title:
Text from PDF Page: 023
[11] L. Schlapbach, A. Zu ̈ttel, Hydrogen storage materials for mobile applications, Nature (London) 414 (2001) 353–8. [12] K. Kaneko, F. Rodr ́ıguez-Reinoso (Eds.), Nanoporous Materials for Gas Storage, Springer Singapore, New York, 2019. [13] M. Hirscher, M. Becher, M. Haluska, F. von Zeppelin, X. Chen, U. Dettlaff-Weglikowska, S. Roth, Are carbon nanostructures an efficient hydrogen storage medium?, J. Alloys Comp. 356 (2003) 433–7. [14] J. S. Arellano, L. M. Molina, A. Rubio, J. A. Alonso, Density functional study of adsorption of molecular hydrogen on graphene layers, J. Chem. Phys. 112 (2000) 8114–9. [15] Office of Energy Efficiency & Renewable Energy, Fuel Cell Technologies Office, Materials-based hy- drogen storage, https://www.energy.gov/eere/fuelcells/materials-based-hydrogen-storage, 2018. Acce- ssed February 26, 2020. [16] Office of Energy Efficiency & Renewable Energy, Fuel Cell Technologies Office, DOE technical tar- gets for onboard hydrogen storage for light-duty vehicles, https://www.energy.gov/eere/fuelcells/doe- technical-targets-onboard-hydrogen-storage-light-duty-vehicles, 2018. Accessed February 26, 2020. [17] S. K. Bhatia, A. L. Myers, Optimum conditions for adsorptive storage, Langmuir 22 (2006) 1688–700. [18] J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, S. Yip, Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures, J. Chem. Phys. 119 (2003) 2376–85. [19] T. Yildirim, S. Ciraci, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium, Phys. Rev. Lett. 94 (2005) 175501. [20] A. Lebon, J. Carrete, L. J. Gallego, A. Vega, Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study, Int. J. Hydrogen Energy 40 (2015) 4960– 8. [21] I. Cabria, M. J. Lo ́pez, J. A. Alonso, Simulation of the hydrogen storage in nanoporous carbons with different pore shapes, Int. J. Hydrogen Energy 36 (2011) 10748–59. [22] I. Cabria, M. J. Lo ́pez, J. A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials, Carbon 45 (2007) 2649–58. 21PDF Image | Hydrogen storage capacity of Li-decorated borophene
PDF Search Title:
Hydrogen storage capacity of Li-decorated boropheneOriginal File Name Searched:
APSUSC-D-20-15170.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)