logo

Hydrogenated Borophene Shows Catalytic Activity as Solid Acid

PDF Publication Title:

Hydrogenated Borophene Shows Catalytic Activity as Solid Acid ( hydrogenated-borophene-shows-catalytic-activity-as-solid-aci )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 006

ACS Omega Article (15) Chen, L.; Chen, X.; Duan, C.; Huang, Y.; Zhang, Q.; Xiao, B. Reversible Hydrogen Storage in Pristine and Li Decorated 2D Boron Hydride. Phys. Chem. Chem. Phys. 2018, 20, 30304−30311. (16) Abtew, T. A.; Shih, B. C.; Dev, P.; Crespi, V. H.; Zhang, P. Prediction of a Multicenter-Bonded Solid Boron Hydride for Hydrogen Storage. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, No. 094108. (17) Makaremi, M.; Mortazavi, B.; Singh, C. V. 2D Hydrogenated Graphene-like Borophene as a High Capacity Anode Material for Improved Li/Na Ion Batteries: A First Principles Study. Mater. Today Energy 2018, 8, 22−28. (18) Xiang, P.; Chen, X.; Xiao, B.; Wang, Z. M. Highly Flexible Hydrogen Boride Monolayers as Potassium-Ion Battery Anodes for Wearable Electronics. ACS Appl. Mater. Interfaces 2019, 11, 8115− 8125. (19) Shukla, V.; Araujo, R. B.; Jena, N. K.; Ahuja, R. Borophene’s Tryst with Stability: Exploring 2D Hydrogen Boride as an Electrode for Rechargeable Batteries. Phys. Chem. Chem. Phys. 2018, 20, 22008− 22016. (20) Bakoyannakis, D. N.; Zamboulis, D.; Stalidis, G. A.; Deliyanni, E. A. The Effect of Preparation Method on the Catalytic Activity of Amorphous Aluminas in Ethanol Dehydration. J. Chem. Technol. Biotechnol. 2001, 76, 1159−1164. (21) Christiansen, M. A.; Mpourmpakis, G.; Vlachos, D. G. Density Functional Theory-Computed Mechanisms of Ethylene and Diethyl Ether Formation from Ethanol on γ-Al2O3(100). ACS Catal. 2013, 3, 1965−1975. (22) Pan, Q.; Ramanathan, A.; Kirk Snavely, W.; Chaudhari, R. V.; Subramaniam, B. Intrinsic Kinetics of Ethanol Dehydration over Lewis Acidic Ordered Mesoporous Silicate, Zr-KIT-6. Top. Catal. 2014, 57, 1407−1411. (23) Roca, F.; De Mourgues, L.; Trambouze, Y. Catalytic Dehydration of Ethanol over Silica-Alumina. J. Catal. 1969, 14, 107−113. (24) Maihom, T.; Khongpracha, P.; Sirijaraensre, J.; Limtrakul, J. Mechanistic Studies on the Transformation of Ethanol into Ethene over Fe-ZSM-5 Zeolite. ChemPhysChem 2013, 14, 101−107. (25) Chen, G.; Li, S.; Jiao, F.; Yuan, Q. Catalytic Dehydration of Bioethanol to Ethylene over TiO2/γ-Al2O3 Catalysts in Microchannel Reactors. Catal. Today 2007, 125, 111−119. (26) Takahara, I.; Saito, M.; Inaba, M.; Murata, K. Dehydration of Ethanol into Ethylene over Solid Acid Catalysts. Catal. Lett. 2005, 105, 249−252. (27) Madeira, F. F.; Gnep, N. S.; Magnoux, P.; Maury, S.; Cadran, N. Ethanol Transformation over HFAU, HBEA and HMFI Zeolites Presenting Similar Brønsted Acidity. Appl. Catal., A 2009, 367, 39− 46. (28) Chiang, H.; Bhan, A. Catalytic Consequences of Hydroxyl Group Location on the Rate and Mechanism of Parallel Dehydration Reactions of Ethanol over Acidic Zeolites. J. Catal. 2010, 271, 251− 261. (29) Xin, H.; Li, X.; Fang, Y.; Yi, X.; Hu, W.; Chu, Y.; Zhang, F.; Zheng, A.; Zhang, H.; Li, X. Catalytic Dehydration of Ethanol over Post-Treated ZSM-5 Zeolites. J. Catal. 2014, 312, 204−215. (30) Kadam, S. A.; Shamzhy, M. V. IR Operando Study of Ethanol Dehydration over MFI Zeolites. Catal. Today 2018, 304, 51−57. (31) Zhang, M.; Yu, Y. Dehydration of Ethanol to Ethylene. Ind. Eng. Chem. Res. 2013, 52, 9505−9514. (32) Sun, J.; Wang, Y. Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catal. 2014, 4, 1078−1090. (33) Varvarin, A. M.; Khomenko, K. M.; Brei, V. V. Conversion of N-Butanol to Hydrocarbons over H-ZSM-5, H-ZSM-11, H-L and H- Y Zeolites. Fuel 2013, 106, 617−620. (34) Kondo, J. N.; Yamazaki, H.; Osuga, R.; Yokoi, T.; Tatsumi, T. Mechanism of Decomposition of Surface Ethoxy Species to Ethene and Acidic OH Groups on H-ZSM-5. J. Phys. Chem. Lett. 2015, 6, 2243−2246. (35) Nishino, H.; Fujita, T.; Yamamoto, A.; Fujimori, T.; Fujino, A.; Ito, S.; Nakamura, J.; Hosono, H.; Kondo, T. Formation Mechanism of Boron-Based Nanosheet through the Reaction of MgB2 with Water. J■. Phys. Chem. C 2017, 121, 10587−10593. View publication stats 14104 DOI: 10.1021/acsomega.9b02020 ACS Omega 2019, 4, 14100−14104 NOTE ADDED AFTER ASAP PUBLICATION This paper published ASAP on August 15, 2019 with an inaccurate equation due to production error. The corrected version reposted to the Web on August 19, 2019.

PDF Image | Hydrogenated Borophene Shows Catalytic Activity as Solid Acid

hydrogenated-borophene-shows-catalytic-activity-as-solid-aci-006

PDF Search Title:

Hydrogenated Borophene Shows Catalytic Activity as Solid Acid

Original File Name Searched:

Hydrogenated_Borophene_Shows_Catalytic_Activity_as.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP