Synthetic Polymer-based Membrane for Lithium Ion

PDF Publication Title:

Synthetic Polymer-based Membrane for Lithium Ion ( synthetic-polymer-based-membrane-lithium-ion )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 040

[25] X. Huang, Separator technologies for lithium-ion batteries, Journal of Solid State Electrochemistry, 15 (2011) 649-662. [26] R.F.P. Pereira, R. Brito-Pereira, R. Gonçalves, M.P. Silva, C.M. Costa, M.M. Silva, V. de Zea Bermudez, S. Lanceros-Méndez, Silk Fibroin Separators: A Step Toward Lithium-Ion Batteries with Enhanced Sustainability, ACS Applied Materials & Interfaces, 10 (2018) 5385-5394. [27] W. Xiao, K. Zhang, J. Liu, C. Yan, Preparation of poly(vinyl alcohol)-based separator with pore-forming additive for lithium-ion batteries, Journal of Materials Science: Materials in Electronics, 28 (2017) 17516-17525. [28] L. Ma, R. Chen, Y. Hu, W. Zhang, G. Zhu, P. Zhao, T. Chen, C. Wang, W. Yan, Y. Wang, L. Wang, Z. Tie, J. Liu, Z. Jin, Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth, Energy Storage Materials, 14 (2018) 258-266. [29] J.-K. Kim, D.H. Kim, S.H. Joo, B. Choi, A. Cha, K.M. Kim, T.-H. Kwon, S.K. Kwak, S.J. Kang, J. Jin, Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries, ACS Nano, 11 (2017) 6114-6121. [30] R. Gonçalves, E. Lizundia, M.M. Silva, C.M. Costa, S. Lanceros-Méndez, Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer Lithium- Ion Batteries, ACS Applied Energy Materials, 2 (2019) 3749-3761. [31] Y.S. Chung, S.H. Yoo, C.K. Kim, Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance, Industrial & Engineering Chemistry Research, 48 (2009) 4346-4351. [32] G. Venugopal, J. Moore, J. Howard, S. Pendalwar, Characterization of microporous separators for lithium-ion batteries, Journal of Power Sources, 77 (1999) 34-41. [33] B.K. Choi, K.H. Shin, Y.W. Kim, Lithium ion conduction in PEO-salt electrolytes gelled with PAN, Solid State Ionics, 113-115 (1998) 123-127. [34] Y. Kang, H.J. Kim, E. Kim, B. Oh, J.H. Cho, Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries, Journal of Power Sources, 92 (2001) 255-259. [35] B. Huang, Z. Wang, G. Li, H. Huang, R. Xue, L. Chen, F. Wang, Lithium ion conduction in polymer electrolytes based on PAN, Solid State Ionics, 85 (1996) 79-84. [36] D. Djian, F. Alloin, S. Martinet, H. Lignier, Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity, Journal of Power Sources, 187 (2009) 575-580. 40

PDF Image | Synthetic Polymer-based Membrane for Lithium Ion

PDF Search Title:

Synthetic Polymer-based Membrane for Lithium Ion

Original File Name Searched:

C11.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)