logo

Synthetic Polymer-based Membrane for Lithium Ion

PDF Publication Title:

Synthetic Polymer-based Membrane for Lithium Ion ( synthetic-polymer-based-membrane-lithium-ion )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 041

[37] C.M. Costa, A. California, V.F. Cardoso, V. Sencadas, L.C. Rodrigues, M.M. Silva, S. Lanceros-Méndez, Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for Lithium-Ion Battery Applications, Ferroelectrics, 430 (2012) 103-107. [38] C.M. Costa, L.C. Rodrigues, V. Sencadas, M.M. Silva, S. Lanceros-Méndez, Effect of the microsctructure and lithium-ion content in poly[(vinylidene fluoride)-co- trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications, Solid State Ionics, 217 (2012) 19-26. [39] C.M. Costa, L.C. Rodrigues, V. Sencadas, M.M. Silva, G. Rocha, S. Lanceros-Méndez, Effect of degree of porosity on the properties of poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators, Journal of Membrane Science, 407-408 (2012) 8. [40] A. Maceiras, A. Gören, V. Sencadas, C.M. Costa, J.L. Vilas, S. Lanceros-Méndez, L.M. León, Effect of cyano dipolar groups on the performance of lithium-ion battery electrospun polyimide gel electrolyte membranes, Journal of Electroanalytical Chemistry, 778 (2016) 57- 65. [41] H. Li, B. Zhang, B. Lin, Y. Yang, Y. Zhao, L. Wang, Electrospun Poly(ether ether ketone) Nanofibrous Separator with Superior Performance for Lithium-Ion Batteries, Journal of The Electrochemical Society, 165 (2018) A939-A946. [42] D. Li, H. Zhang, X. Li, Porous polyetherimide membranes with tunable morphology for lithium-ion battery, Journal of Membrane Science, 565 (2018) 42-49. [43] G. Sun, L. Kong, B. Liu, H. Niu, M. Zhang, G. Tian, S. Qi, D. Wu, Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide- core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries, Journal of Membrane Science, 582 (2019) 132-139. [44] H. Zhang, Y. Zhang, T. Xu, A.E. John, Y. Li, W. Li, B. Zhu, Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries, Journal of Power Sources, 329 (2016) 8-16. [45] X.Q. Yang, H.S. Lee, L. Hanson, J. McBreen, Y. Okamoto, Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect, Journal of Power Sources, 54 (1995) 198-204. [46] O. Nishikawa, T. Sugimoto, S. Nomura, K. Doyama, K. Miyatake, H. Uchida, M. Watanabe, Preparation of the electrode for high temperature PEFCs using novel polymer electrolytes based on organic/inorganic nanohybrids, Electrochimica Acta, 50 (2004) 667- 672. [47] C.M. Costa, L.C. Rodrigues, V. Sencadas, M.M. Silva, J.G. Rocha, S. Lanceros-Méndez, Effect of degree of porosity on the properties of poly(vinylidene fluoride–trifluorethylene) for Li-ion battery separators, Journal of Membrane Science, 407-408 (2012) 193-201. 41

PDF Image | Synthetic Polymer-based Membrane for Lithium Ion

synthetic-polymer-based-membrane-lithium-ion-041

PDF Search Title:

Synthetic Polymer-based Membrane for Lithium Ion

Original File Name Searched:

C11.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP