logo

Synthetic Polymer-based Membrane for Lithium Ion

PDF Publication Title:

Synthetic Polymer-based Membrane for Lithium Ion ( synthetic-polymer-based-membrane-lithium-ion )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 046

[97] ASTM D2873-94(1999)e1, Standard Test Method for Interior Porosity of Poly(Vinyl Chloride) (PVC) Resins by Mercury Intrusion Porosimetry, ASTM International, West Conshohocken, 1999. [98] J. Nunes-Pereira, C.M. Costa, R.E. Sousa, A.V. Machado, M.M. Silva, S. Lanceros- Méndez, Li-ion battery separator membranes based on barium titanate and poly(vinylidene fluoride-co-trifluoroethylene): Filler size and concentration effects, Electrochimica Acta, 117 (2014) 276-284. [99] ASTM D726-94(2003), Standard Test Method for Resistance of Nonporous Paper to Passage of Air, ASTM International, West Conshohocken, 1994. [100] ASTM D737-96, Test Method for Air Permeability of Textile Fabrics, ASTM International, West Conshohocken, 1996. [101] ASTM D882-18, Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM International, West Conshohocken, 2018. [102] ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, 2014. [103] ASTM D3763-18, Standard Test Method for High Speed Puncture Properties of Plastics Using Load and Displacement Sensors, ASTM International, West Conshohocken, 2018. [104] R. Gonçalves, D. Miranda, A.M. Almeida, M.M. Silva, J.M. Meseguer-Dueñas, J.L.G. Ribelles, S. Lanceros-Méndez, C.M. Costa, Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries, Sustainable Materials and Technologies, 21 (2019). [105] D. Chen, Z. Zhou, C. Feng, W. Lv, Z. Wei, K.H.L. Zhang, B. Lin, S. Wu, T. Lei, X. Guo, G. Zhu, X. Jian, J. Xiong, E. Traversa, S.X. Dou, W. He, An Upgraded Lithium Ion Battery Based on a Polymeric Separator Incorporated with Anode Active Materials, Advanced Energy Materials, 9 (2019) 1803627. [106] J. Liu, X. Shi, B. Boateng, Y. Han, D. Chen, W. He, A Highly Stable Separator from an Instantly Reformed Gel with Direct Post-Solidation for Long-Cycle High-Rate Lithium-Ion Batteries, ChemSusChem, 12 (2019) 908-914. [107] X. Gui, L. Liu, S. Gao, L. Sun, K. Xu, M. Chen, A novel silsesquioxanes modified electrospun composite fibrous separator by in-situ crosslinking method for lithium-ion batteries, Materials Letters, 242 (2019) 66-70. [108] X. Shi, Q. Sun, B. Boateng, Y. Niu, Y. Han, W. Lv, W. He, A quasi-solid composite separator with high ductility for safe and high-performance lithium-ion batteries, Journal of Power Sources, 414 (2019) 225-232. 46

PDF Image | Synthetic Polymer-based Membrane for Lithium Ion

synthetic-polymer-based-membrane-lithium-ion-046

PDF Search Title:

Synthetic Polymer-based Membrane for Lithium Ion

Original File Name Searched:

C11.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP