logo

Zeolite-Templated Carbon as the Cathode

PDF Publication Title:

Zeolite-Templated Carbon as the Cathode ( zeolite-templated-carbon-as-cathode )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Page 15 of 17 ACS Applied Materials & Interfaces Notes The authors declare no competing financial interest. ACKNOWLEDGMENTS We thank Devin McGlamery for assistance with SEM meas‐ urements, Hans Swenson for assistance with N2 adsorption measurements, and Shutao Wang for assistance in the prepara‐ tion of ZTC electrodes. The authors are grateful to the Micro El‐ emental Analysis Service of the Laboratory for Organic Chem‐ istry at ETH Zürich, the Empa Electron Microscopy Center and Laboratory for Mechanics of Materials & Nanostructures, and the Montana Nanotechnology Facility (MONT, supported by the National Science Foundation grant ECCS‐1542210) for access to their instruments and technical assistance. This research is part of the activities of SCCER HaE (Heat and Electricity Stor‐ age), which is financially supported by Innosuisse ‐ Swiss Inno‐ vation Agency. L.P. acknowledges financial support from the Scholarship Fund of the Swiss Chemical Industry (SSCI Award 2015). N.P.S. acknowledges financial support from start‐up funding provided by Montana State University. REFERENCES (1) Wang, M.; Tang, Y., A Review on the Features and Progress of Dual‐Ion Batteries. Adv. Energy Mater. 2018, 8, 1703320. (2) Rodríguez‐Pérez, I. A.; Ji, X., Anion Hosting Cathodes in Dual‐ Ion Batteries. ACS Energy Lett. 2017, 2 (8), 1762‐1770. (3) Schoetz, T.; de Leon, C. P.; Ueda, M.; Bund, A., Perspective— State of the Art of Rechargeable Aluminum Batteries in Non‐Aqueous Systems. J. Electrochem. Soc. 2017, 164 (14), A3499‐A3502. (4) Zhang, Y.; Liu, S.; Ji, Y.; Ma, J.; Yu, H., Emerging Nonaqueous Aluminum‐Ion Batteries: Challenges, Status, and Perspectives. Adv. Mater. 2018, 1706310. (5) Zhao, H.; Xu, J.; Yin, D.; Du, Y., A Minireview of Electrolytes for Batteries with Earth‐Abundant Metallic Anodes. Chem. Eur. J. 2018. (6) Jobert, A.; Touzain, P.; Bonnetain, L., Insertion des Ions PF6−, AsF6− et SbF6− dans le Graphite par Methode Electrochimique. Caracterisation des Produits Obtenus. Carbon 1981, 19 (3), 193‐198. (7) Placke, T.; Bieker, P.; Lux, S. F.; Fromm, O.; Meyer, H.‐W.; Passerini, S.; Winter, M., Dual‐Ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid‐Based Electrolytes. Z. Phys. Chem. 2012, 226 (5‐6), 391‐407. (8) Placke, T.; Fromm, O.; Lux, S. F.; Bieker, P.; Rothermel, S.; Meyer, H.‐W.; Passerini, S.; Winter, M., Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual‐Ion Cells. J. Electrochem. Soc. 2012, 159 (11), A1755‐A1765. (9) Beltrop, K.; Beuker, S.; Heckmann, A.; Winter, M.; Placke, T., Alternative Electrochemical Energy Storage: Potassium‐Based Dual‐ Graphite Batteries. Energy Environ. Sci. 2017, 10 (10), 2090‐2094. (10) Fan, L.; Liu, Q.; Chen, S.; Xu, Z.; Lu, B., Soft Carbon as Anode for High‐Performance Sodium‐Based Dual Ion Full Battery. Adv. Energy Mater. 2017, 7 (14), 1602778. (11) Ji, B.; Zhang, F.; Wu, N.; Tang, Y., A Dual‐Carbon Battery Based on Potassium‐Ion Electrolyte. Adv. Energy Mater. 2017, 7 (20), 1700920. (12) Ji, B.; Zhang, F.; Song, X.; Tang, Y., A Novel Potassium‐Ion‐ Based Dual‐Ion Battery. Adv. Mater. 2017, 29 (19), 1700519. (13) Fan, L.; Liu, Q.; Chen, S.; Lin, K.; Xu, Z.; Lu, B., Potassium‐ Based Dual Ion Battery with Dual‐Graphite Electrode. Small 2017, 13 (30), 1701011. (14) Kravchyk, K. V.; Wang, S.; Piveteau, L.; Kovalenko, M. V., Efficient Aluminum Chloride–Natural Graphite Battery. Chem. Mater. 2017, 29 (10), 4484‐4492. (15) Wang, S.; Kravchyk, K. V.; Krumeich, F.; Kovalenko, M. V., Kish Graphite Flakes as a Cathode Material for an Aluminum Chloride– Graphite Battery. ACS Appl. Mater. Interfaces 2017, 9 (34), 28478‐ 28485. (16) Lin, M.‐C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.‐Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.‐J.; Dai, H., An Ultrafast Rechargeable Aluminium‐Ion Battery. Nature 2015, 520, 324‐328. 10 (17) Liu, Z.; Wang, J.; Ding, H.; Chen, S.; Yu, X.; Lu, B., Carbon Nanoscrolls for Aluminum Battery. ACS Nano 2018, 12 (8), 8456–8466. (18) Yu, X.; Wang, B.; Gong, D.; Xu, Z.; Lu, B., Graphene Nanoribbons on Highly Porous 3D Graphene for High‐Capacity and Ultrastable Al‐Ion Batteries. Adv. Mater. 2017, 29 (4), 1604118. (19) Yang, H.; Shi, X.; Deng, T.; Qin, T.; Sui, L.; Feng, M.; Chen, H.; Zhang, W.; Zheng, W., Carbon‐Based Dual‐Ion Battery with Enhanced Capacity and Cycling Stability. ChemElectroChem 2018, 5 (23), 3612‐ 3618. (20) Zhang, Q.; Wang, L.; Wang, J.; Xing, C.; Ge, J.; Fan, L.; Liu, Z.; Lu, X.; Wu, M.; Yu, X., Low‐Temperature Synthesis of Edge‐Rich Graphene Paper for High‐Performance Aluminum Batteries. Energy Storage Mater. 2018, 15 361‐367. (21) Chen, S.; Wang, J.; Fan, L.; Ma, R.; Zhang, E.; Liu, Q.; Lu, B., An Ultrafast Rechargeable Hybrid Sodium‐Based Dual‐Ion Capacitor Based on Hard Carbon Cathodes. Adv. Energy Mater. 2018, 1800140. (22) Zhang, F.; Ji, B.; Tong, X.; Sheng, M.; Zhang, X.; Lee, C. S.; Tang, Y., A Dual‐Ion Battery Constructed with Aluminum Foil Anode and Mesocarbon Microbead Cathode via an Alloying/Intercalation Process in an Ionic Liquid Electrolyte. Adv. Mater. Interfaces 2016, 3 (23). (23) Liao, H.‐J.; Chen, Y.‐M.; Kao, Y.‐T.; An, J.‐Y.; Lai, Y.‐H.; Wang, D.‐Y., Freestanding Cathode Electrode Design for High‐Performance Sodium Dual‐Ion Battery. J. Phys. Chem. C 2017, 121 (44), 24463‐ 24469. (24) Rodríguez‐Pérez, I. A.; Jian, Z.; Waldenmaier, P. K.; Palmisano, J. W.; Chandrabose, R. S.; Wang, X.; Lerner, M. M.; Carter, R. G.; Ji, X., A Hydrocarbon Cathode for Dual‐Ion Batteries. ACS Energy Lett. 2016, 1 (4), 719‐723. (25) Rodríguez‐Pérez, I. A.; Bommier, C.; Fuller, D. D.; Leonard, D. P.; Williams, A. G.; Ji, X., Toward Higher Capacities of Hydrocarbon Cathodes in Dual‐Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10 (50), 43311‐43315. (26) Deunf, E.; Moreau, P.; Quarez, E.; Guyomard, D.; Dolhem, F.; Poizot, P., Reversible Anion Intercalation in a Layered Aromatic Amine: a High‐Voltage Host Structure for Organic Batteries. J. Mater. Chem. A 2016, 4 (16), 6131‐6139. (27) Fan, L.; Liu, Q.; Xu, Z.; Lu, B., An Organic Cathode for Potassium Dual‐Ion Full Battery. ACS Energy Lett. 2017, 2 (7), 1614‐ 1620. (28) Walter, M.; Kravchyk, K. V.; Böfer, C.; Widmer, R.; Kovalenko, M. V., Polypyrenes as High‐Performance Cathode Materials for Aluminum Batteries. Adv. Mater. 2018, 30 (15), 1705644. (29) Hudak, N. S., Chloroaluminate‐Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries. J. Phys. Chem. C 2014, 118 (10), 5203‐5215. (30) Reddy, M. A.; Fichtner, M., Batteries Based on Fluoride Shuttle. J. Mater. Chem. 2011, 21 (43), 17059‐17062. (31) Zhou, Z.; Li, N.; Yang, Y.; Chen, H.; Jiao, S.; Song, W. L.; Fang, D., Ultra‐Lightweight 3D Carbon Current Collectors: Constructing All‐ Carbon Electrodes for Stable and High Energy Density Dual‐Ion Batteries. Adv. Energy Mater. 2018, 8 (26), 1801439. (32) Microporous materials are designated by the IUPAC as having a characteristic pore width of <2 nm, and hence representing the narrowest extreme in nanoscale porosity. (33) Aubrey, M. L.; Long, J. R., A Dual‐Ion Battery Cathode via Oxidative Insertion of Anions in a Metal‐Organic Framework. J. Am. Chem. Soc. 2015, 137 (42), 13594‐13602. (34) Zhang, Z.; Yoshikawa, H.; Awaga, K., Discovery of a “Bipolar Charging” Mechanism in the Solid‐State Electrochemical Process of a Flexible Metal–Organic Framework. Chem. Mater. 2016, 28 (5), 1298‐ 1303. (35) Dühnen, S.; Nölle, R.; Wrogemann, J.; Winter, M.; Placke, T., Reversible Anion Storage in a Metal‐Organic Framework for Dual‐Ion Battery Systems. J. Electrochem. Soc. 2019, 166 (3), A5474‐A5482. (36) Nishihara, H.; Kyotani, T., Templated Nanocarbons for Energy Storage. Adv. Mater. 2012, 24 (33), 4473‐4498. (37) Meyers, C. J.; Shah, S. D.; Patel, S. C.; Sneeringer, R. M.; Bessel, C. A.; Dollahon, N. R.; Leising, R. A.; Takeuchi, E. S., Templated Synthesis of Carbon Materials from Zeolites (Y, Beta, and ZSM‐5) and a Montmorillonite Clay (K10): Physical and Electrochemical Characterization. J. Phys. Chem. B 2001, 105, 2143‐2152. (38) Lv, Y.; Wu, Z.; Qian, X.; Fang, Y.; Feng, D.; Xia, Y.; Tu, B.; Zhao, D., Site‐Specific Carbon Deposition for Hierarchically Ordered ACS Paragon Plus Environment

PDF Image | Zeolite-Templated Carbon as the Cathode

zeolite-templated-carbon-as-cathode-011

PDF Search Title:

Zeolite-Templated Carbon as the Cathode

Original File Name Searched:

Stadie_ACSAMI_2019_FINAL.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP