PDF Publication Title:
Text from PDF Page: 012
Core/Shell‐Structured Graphitic Carbon with Remarkable Electrochemical Performance. ChemSusChem 2013, 6 (10), 1938‐1944. (39) Nishihara, H.; Kyotani, T., Zeolite‐Templated Carbons ‐ Three‐dimensional Microporous Graphene Frameworks. Chem. Commun. 2018, 54, 5648‐5673. (40) Huggins, R. A., Mixed‐Conducting Host Structures into which either Cations or Anions can be Inserted. Solid state ionics 1998, 113, 533‐544. (41) Beltrop, K.; Meister, P.; Klein, S.; Heckmann, A.; Gruenebaum, M.; Wiemhöfer, H.‐D.; Winter, M.; Placke, T., Does Size Really Matter? New Insights into the Intercalation Behavior of Anions into a Graphite‐ Based Positive Electrode for Dual‐Ion Batteries. Electrochim. Acta 2016, 209, 44‐55. (42) Sun, L.; Campbell, M. G.; Dincă, M., Electrically Conductive Porous Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55 (11), 3566‐3579. (43) Salitra, G.; Soffer, A.; Eliad, L.; Cohen, Y.; Aurbach, D., Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions. J. Electrochem. Soc. 2000, 147 (7), 2486‐2493. (44) Zhang, L. L.; Gu, Y.; Zhao, X., Advanced Porous Carbon Electrodes for Electrochemical Capacitors. J. Mater. Chem. A 2013, 1 (33), 9395‐9408. (45) Nishihara, H.; Fujimoto, H.; Itoi, H.; Nomura, K.; Tanaka, H.; Miyahara, M. T.; Bonnaud, P. A.; Miura, R.; Suzuki, A.; Miyamoto, N., Graphene‐Based Ordered Framework with a Diverse Range of Carbon Polygons Formed in Zeolite Nanochannels. Carbon 2018, 129, 854‐862. (46) Lee, H.; Kim, K.; Kang, S.‐H.; Kwon, Y.; Kim, J. H.; Kwon, Y.‐K.; Ryoo, R.; Park, J. Y., Extremely High Electrical Conductance of Microporous 3D Graphene‐Like Zeolite‐Templated Carbon Framework. Sci. Rep. 2017, 7, 11460. (47) Ania, C. O.; Khomenko, V.; Raymundo‐Piñero, E.; Parra, J. B.; Béguin, F., The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template. Adv. Funct. Mater. 2007, 17 (11), 1828‐1836. (48) Kajdos, A.; Kvit, A.; Jones, F.; Jagiello, J.; Yushin, G., Tailoring the Pore Alignment for Rapid Ion Transport in Microporous Carbons. J. Am. Chem. Soc. 2010, 132 (10), 3252‐3253. (49) Portet, C.; Yang, Z.; Korenblit, Y.; Gogotsi, Y.; Mokaya, R.; Yushin, G., Electrical Double‐layer Capacitance of Zeolite‐Templated Carbon in Organic Electrolyte. J. Electrochem. Soc. 2009, 156, 1‐6. (50) Itoi, H.; Nishihara, H.; Kogure, T.; Kyotani, T., Three‐ Dimensionally Arrayed and Mutually Connected 1.2‐nm Nanopores for High‐Performance Electric Double Layer Capacitor. J. Am. Chem. Soc. 2011, 133, 1165‐1167. (51) Nishihara, H.; Itoi, H.; Kogure, T.; Hou, P.‐X.; Touhara, H.; Okino, F.; Kyotani, T., Investigation of the Ion Storage/Transfer Behavior in an Electrical Double‐layer Capacitor by Using Ordered Microporous Carbons as Model Materials. Chem. Eur. J. 2009, 15, 5355‐ 5363. (52) Nueangnoraj, K.; Ruiz‐Rosas, R.; Nishihara, H.; Shiraishi, S.; Morallon, E.; Cazorla‐Amoros, D.; Kyotani, T., Carbon–Carbon Asymmetric Aqueous Capacitor by Pseudocapacitive Positive and Stable Negative Electrodes. Carbon 2014, 67, 792‐794. (53) Korenblit, Y.; Kajdos, A.; West, W. C.; Smart, M. C.; Brandon, E. J.; Kvit, A.; Jagiello, J.; Yushin, G., In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures. Adv. Funct. Mater. 2012, 22 (8), 1655‐1662. (54) Moon, J. S.; Kim, H.; Lee, D. C.; Lee, J. T.; Yushin, G., Increasing Capacitance of Zeolite‐Templated Carbons in Electric Double Layer Capacitors. J. Electrochem. Soc. 2015, 162 (5), A5070‐A5076. (55) Stadie, N. P.; Wang, S.; Kravchyk, K. V.; Kovalenko, M. V., Zeolite‐Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries. ACS Nano 2017, 11 (2), 1911‐1919. (56) Kim, K.; Lee, T.; Kwon, Y.; Seo, Y.; Song, J.; Park, J. K.; Lee, H.; Park, J. Y.; Ihee, H.; Cho, S. J.; Ryoo, R., Lanthanum‐Catalysed Synthesis 11 of Microporous 3D Graphene‐Like Carbons in a Zeolite Template. Nature 2016, 535, 131‐135. (57) Beltrop, K.; Qi, X.; Hering, T.; Röser, S.; Winter, M.; Placke, T., Enabling Bis(fluorosulfonyl)imide‐Based Ionic Liquid Electrolytes for Application in Dual‐Ion Batteries. J. Power Sources 2018, 373, 193‐202. (58) Karu, K.; Ruzanov, A.; Ers, H.; Ivaništšev, V.; Lage‐Estebanez, I.; García de la Vega, J. M., Predictions of Physicochemical Properties of Ionic Liquids with DFT. Computation 2016, 4 (3), 25. (59) Sun, H.; Wang, W.; Yu, Z.; Yuan, Y.; Wang, S.; Jiao, S., A New Aluminium‐Ion Battery with High Voltage, High Safety and Low Cost. Chem. Commun. 2015, 51, 11892‐11895. (60) Wu, Y.; Gong, M.; Lin, M.‐C.; Yuan, C.; Angell, M.; Huang, L.; Wang, D.‐Y.; Zhang, X.; Yang, J.; Hwang, B.‐J.; Dai, H., 3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminum‐Ion Battery. Adv. Mater. 2016, 28, 9218‐9222. (61) Jiao, S.; Lei, H.; Tu, J.; Zhu, J.; Wang, J.; Mao, X., An Industrialized Prototype of the Rechargeable Al/AlCl3‐ [EMIm]Cl/Graphite Battery and Recycling of the Graphitic Cathode into Graphene. Carbon 2016, 109, 276‐281. (62) Ma, Z.; Kyotani, T.; Tomita, A., Synthesis Methods for Preparing Microporous Carbons with a Structural Regularity of Zeolite Y. Carbon 2002, 40 (13), 2367‐2374. (63) Rouquerol, J.; Llewellyn, P.; Rouquerol, F., Is the BET Equation Applicable to Microporous Adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49‐56. (64) Kravchyk, K. V.; Bhauriyal, P.; Piveteau, L.; Guntlin, C. P.; Pathak, B.; Kovalenko, M. V., High‐Energy‐Density Dual‐Ion Battery for Stationary Storage of Electricity Using Concentrated Potassium Fluorosulfonylimide. Nat. Commun. 2018, 9, 4469. (65) Gogotsi, Y.; Penner, R. M., Energy Storage in Nanomaterials– Capacitive, Pseudocapacitive, or Battery‐like? ACS Nano 2018, 12, 2081‐2083. (66) Nueangnoraj, K.; Nishihara, H.; Ishii, T.; Yamamoto, N.; Itoi, H.; Berenguer, R.; Ruiz‐Rosas, R.; Cazorla‐Amorós, D.; Morallón, E.; Ito, M.; Kyotani, T., Pseudocapacitance of Zeolite‐Templated Carbon in Organic Electrolytes. Energy Storage Mater. 2015, 1, 35‐41. (67) Simoes, M. C.; Hughes, K. J.; Ingham, D. B.; Ma, L.; Pourkashanian, M., Estimation of the Thermochemical Radii and Ionic Volumes of Complex Ions. Inorg. Chem. 2017, 56 (13), 7566‐7573. (68) Beran, M.; Příhoda, J.; Žák, Z.; Černík, M., A New Route to the Syntheses of Alkali Metal Bis(fluorosulfuryl)imides: Crystal Structure of LiN(SO2F)2. Polyhedron 2006, 25 (6), 1292‐1298. (69) Dong, L.; Ma, X.; Li, Y.; Zhao, L.; Liu, W.; Cheng, J.; Xu, C.; Li, B.; Yang, Q.‐H.; Kang, F., Extremely Safe, High‐Rate and Ultralong‐Life Zinc‐ Ion Hybrid Supercapacitors. Energy Storage Mater. 2018, 13, 96‐102. (70) Katinonkul, W.; Lerner, M. M., Graphite Intercalation Compounds with Large Fluoroanions. J. Fluorine Chem. 2007, 128 (4), 332‐335. (71) Matsuoka, K.; Yamagishi, Y.; Yamazaki, T.; Setoyama, N.; Tomita, A.; Kyotani, T., Extremely high Microporosity and Sharp Pore Size Distribution of a Large Surface Area Carbon Prepared in the Nanochannels of Zeolite Y. Carbon 2005, 43, 855‐894. (72) Rouquerol, F.; Rouquerol, J.; Sing, K. S. W., Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications. Academic Press: San Diego, 1999; p xvi, 467 p. (73) Wang, S.; Kravchyk, K. V.; Filippin, A. N.; Widmer, R.; Tiwari, A.; Buecheler, S.; Bodnarchuk, M. I.; Kovalenko, M. V., Overcoming the High‐Voltage Limitations of Li‐Ion Batteries using a Titanium Nitride Current Collector. ACS Appl. Energy Mater. 2019, 2 (2), 974‐978. (74) Wang, S.; Kravchyk, K. V.; Filippin, A. N.; Müller, U.; Tiwari, A. N.; Buecheler, S.; Bodnarchuk, M. I.; Kovalenko, M. V., Aluminum Chloride‐Graphite Batteries with Flexible Current Collectors Prepared from Earth‐Abundant Elements. Adv. Sci. 2018, 5 (4), 1700712. ACS Applied Materials & Interfaces Page 16 of 17 ACS Paragon Plus EnvironmentPDF Image | Zeolite-Templated Carbon as the Cathode
PDF Search Title:
Zeolite-Templated Carbon as the CathodeOriginal File Name Searched:
Stadie_ACSAMI_2019_FINAL.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)