Charging performance of the Su-Schrieffer-Heeger quantum battery

PDF Publication Title:

Charging performance of the Su-Schrieffer-Heeger quantum battery ( charging-performance-su-schrieffer-heeger-quantum-battery )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

FANG ZHAO, FU-QUAN DOU, AND QING ZHAO PHYSICAL REVIEW RESEARCH 4, 013172 (2022) that we could enhance the capacity by increasing the spin numbers. V. CONCLUSION In conclusion, we have investigated the SSH QB charging properties with an external cavity field. First, the maximum energy and ergotropy appear at the first peak during the charging process in our charging protocol, which leads to an ter corresponds to a relatively smaller energy and ergotropy. However, in the fully nondegenerate ground state regime, the large dimerization parameter will dramatically increase the QB’s energy and ergotropy. This is because dimerization spin pairs have relatively larger occupations than other spins. Finally, although the dimerization parameter will enhance the energy and ergotropy, the QB’s capacity decreases. ACKNOWLEDGMENTS This work is supported by the National Science Foundation (NSF) of China with Grants No. 11675014 and No. 12075193. [15] D. Rossini, G. M. Andolina, D. Rosa, M. Carrega, and M. Polini, Quantum Advantage in the Charging Process of Sachdev-Ye-Kitaev Batteries, Phys. Rev. Lett. 125, 236402 (2020). [16] F.-Q. Dou, Y.-J. Wang, and J.-A. Sun, Highly efficient charging and discharging of three-level quantum batteries through short- cuts to adiabaticity, Front. Phys. 17, 31503 (2022). [17] A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, Max- imal work extraction from finite quantum systems, Europhys. Lett. 67, 565 (2004). [18] F. T. Tabesh, F. H. Kamin, and S. Salimi, Environment-mediated charging process of quantum batteries, Phys. Rev. A 102, 052223 (2020). [19] D. Farina, G. M. Andolina, A. Mari, M. Polini, and V. Giovannetti, Charger-mediated energy transfer for quantum bat- teries: An open-system approach, Phys. Rev. B 99, 035421 (2019). [20] A. C. Santos, B. Çakmak, S. Campbell, and N. T. Zinner, Stable adiabatic quantum batteries, Phys. Rev. E 100, 032107 (2019). [21] F. H. Kamin, F. T. Tabesh, S. Salimi, F. Kheirandish, and A. C. Santos, Non-Markovian effects on charging and self- discharging process of quantum batteries, New J. Phys. 22, 083007 (2020). [22] J. Monsel, M. Fellous-Asiani, B. Huard, and A. Auffèves, The Energetic Cost of Work Extraction, Phys. Rev. Lett. 124, 130601 (2020). [23] J. Q. Quach and W. J. Munro, Using Dark States to Charge and Stabilize Open Quantum Batteries, Phys. Rev. Applied 14, 024092 (2020). [24] S. Zakavati, F. T. Tabesh, and S. Salimi, Bounds on charging power of open quantum batteries, Phys. Rev. E 104, 054117 (2021). [25] F. Barra, Dissipative Charging of a Quantum Battery, Phys. Rev. Lett. 122, 210601 (2019). [26] J. Liu, D. Segal, and G. Hanna, Loss-free excitonic quantum battery, J. Phys. Chem. C 123, 18303 (2019). [27] K. Sen and U. Sen, Local passivity and entanglement in shared quantum batteries, Phys. Rev. A 104, L030402 (2021). [28] K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and A. Acín, Entanglement Generation is Not Necessary for Optimal Work Extraction, Phys. Rev. Lett. 111, 240401 (2013). [29] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, and K. Modi, Enhancing the Charging Power of Quantum Batteries, Phys. Rev. Lett. 118, 150601 (2017). optimal charging time τc ∝ 1/ N. In the degenerate ground state regime, the dimerization parameter has little influence on the energy and ergotropy. The large dimerization parame- [1] F. Campaioli, F. A. Pollock, and S. Vinjanampathy, Quantum batteries, in Thermodynamics in the Quantum Regime: Funda- mental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer, Cham, 2018), pp. 207–225. [2] R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E 87, 042123 (2013). [3] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M. Polini, High-Power Collective Charging of a Solid-State Quantum Battery, Phys. Rev. Lett. 120, 117702 (2018). [4] L. Fusco, M. Paternostro, and G. De Chiara, Work extraction and energy storage in the Dicke model, Phys. Rev. E 94, 052122 (2016). [5] F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quanta- cell: Powerful charging of quantum batteries, New J. Phys. 17, 075015 (2015). [6] T. P. Le, J. Levinsen, K. Modi, M. M. Parish, and F. A. Pollock, Spin-chain model of a many-body quantum battery, Phys. Rev. A 97, 022106 (2018). [7] Y.-Y. Zhang, T.-R. Yang, L. Fu, and X. Wang, Powerful har- monic charging in a quantum battery, Phys. Rev. E 99, 052106 (2019). [8] X. Zhang and M. Blaauboer, Enhanced energy transfer in a Dicke quantum battery, arXiv:1812.10139. [9] G. M. Andolina, D. Farina, A. Mari, V. Pellegrini, V. Giovannetti, and M. Polini, Charger-mediated energy transfer in exactly solvable models for quantum batteries, Phys. Rev. B 98, 205423 (2018). [10] S. Julià-Farré, T. Salamon, A. Riera, M. N. Bera, and M. Lewenstein, Bounds on the capacity and power of quantum batteries, Phys. Rev. Research 2, 023113 (2020). [11] J. Chen, L. Zhan, L. Shao, X. Zhang, Y. Zhang, and X. Wang, Charging quantum batteries with a general harmonic driving field, Ann. Phys. (Berlin) 532, 1900487 (2020). [12] D. Rosa, D. Rossini, G. M. Andolina, M. Polini, and M. Carrega, Ultra-stable charging of fast-scrambling SYK quantum batteries, J. High Energy Phys. 11 (2020) 067. [13] A. Crescente, M. Carrega, M. Sassetti, and D. Ferraro, Charging and energy fluctuations of a driven quantum battery, New J. Phys. 22, 063057 (2020). [14] A. C. Santos, Quantum advantage of two-level batteries in the self-discharging process, Phys. Rev. E 103, 042118 (2021). √ 013172-8

PDF Image | Charging performance of the Su-Schrieffer-Heeger quantum battery

PDF Search Title:

Charging performance of the Su-Schrieffer-Heeger quantum battery

Original File Name Searched:

2105-00258.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)