Charging performance of the Su-Schrieffer-Heeger quantum battery

PDF Publication Title:

Charging performance of the Su-Schrieffer-Heeger quantum battery ( charging-performance-su-schrieffer-heeger-quantum-battery )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

CHARGING PERFORMANCE OF THE ... PHYSICAL REVIEW RESEARCH 4, 013172 (2022) [30] G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti, and M. Polini, Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries, Phys. Rev. Lett. 122, 047702 (2019). [31] N. Friis and M. Huber, Precision and work fluctuations in Gaus- sian battery charging, Quantum 2, 61 (2018). [32] F. H. Kamin, F. T. Tabesh, S. Salimi, and A. C. Santos, Entan- glement, coherence, and charging process of quantum batteries, Phys. Rev. E 102, 052109 (2020). [33] F. Caravelli, G. Coulter-De Wit, L. P. García-Pintos, and A. Hamma, Random quantum batteries, Phys. Rev. Research 2, 023095 (2020). [34] L. P. García-Pintos, A. Hamma, and A. del Campo, Fluctuations in Extractable Work Bound the Charging Power of Quantum Batteries, Phys. Rev. Lett. 125, 040601 (2020). [35] F.-Q. Dou, Y.-J. Wang, and J.-A. Sun, Closed-loop three-level charged quantum battery, Europhys. Lett. 131, 43001 (2020). [36] F. Pirmoradian and K. Mølmer, Aging of a quantum battery, Phys. Rev. A 100, 043833 (2019). [37] S. Ghosh, T. Chanda, and A. Sen(De), Enhancement in the performance of a quantum battery by ordered and disordered interactions, Phys. Rev. A 101, 032115 (2020). [38] G. M. Andolina, M. Keck, A. Mari, V. Giovannetti, and M. Polini, Quantum versus classical many-body batteries, Phys. Rev. B 99, 205437 (2019). [39] A. C. Santos, A. Saguia, and M. S. Sarandy, Stable and charge- switchable quantum batteries, Phys. Rev. E 101, 062114 (2020). [40] D. Rossini, G. M. Andolina, and M. Polini, Many-body local- ized quantum batteries, Phys. Rev. B 100, 115142 (2019). [41] W. J. Chetcuti, C. Sanavio, S. Lorenzo, and T. J. G. Apollaro, Perturbative many-body transfer, New J. Phys. 22, 033030 (2020). [42] F. Zhao, F.-Q. Dou, and Q. Zhao, Quantum battery of interacting spins with environmental noise, Phys. Rev. A 103, 033715 (2021). [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] K. Harigaya, Lattice distortion and energy-level struc- tures in doped C60 and C70 molecules studied with the extended Su-Schrieffer-Heeger model: Polaron excita- tions and optical absorption, Phys. Rev. B 45, 13676 (1992). E. Fradkin and J. E. Hirsch, Phase diagram of one-dimensional electron-phonon systems. I. The Su-Schrieffer-Heeger model, Phys. Rev. B 27, 1680 (1983). S. Kivelson and D. E. Heim, Hubbard versus Peierls and the Su-Schrieffer-Heeger model of polyacetylene, Phys. Rev. B 26, 4278 (1982). L. Fu and C. L. Kane, Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator, Phys. Rev. Lett. 100, 096407 (2008). F. Grusdt, M. Höning, and M. Fleischhauer, Topological Edge States in the One-Dimensional Superlattice Bose-Hubbard Model, Phys. Rev. Lett. 110, 260405 (2013). L. Li, Z. Xu, and S. Chen, Topological phases of general- ized Su-Schrieffer-Heeger models, Phys. Rev. B 89, 085111 (2014). B. Zhu, R. Lü, and S. Chen, PT symmetry in the non-Hermitian Su-Schrieffer-Heeger model with complex boundary potentials, Phys. Rev. A 89, 062102 (2014). V. Dal Lago, M. Atala, and L. E. F. Foa Torres, Floquet topological transitions in a driven one-dimensional topological insulator, Phys. Rev. A 92, 023624 (2015). L. Li and S. Chen, Characterization of topological phase transi- tions via topological properties of transition points, Phys. Rev. B 92, 085118 (2015). C. Yuce and H. Ramezani, Topological states in a non- Hermitian two-dimensional Su-Schrieffer-Heeger model, Phys. Rev. A 100, 032102 (2019). J. K. Asbóth, L. Oroszlány, and A. P. Pályi, A Short Course on Topological Insulators, Lecture Notes in Physics Vol. 919 (Springer, Berlin, 2016), pp. 10–16. 013172-9

PDF Image | Charging performance of the Su-Schrieffer-Heeger quantum battery

PDF Search Title:

Charging performance of the Su-Schrieffer-Heeger quantum battery

Original File Name Searched:

2105-00258.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)