Electrochemical Potential MIL-101(Fe) as Cathode Material in Li-Ion Batteries

PDF Publication Title:

Electrochemical Potential MIL-101(Fe) as Cathode Material in Li-Ion Batteries ( electrochemical-potential-mil-101fe-as-cathode-material-li-i )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

Condens. Matter 2021, 6, 22 8 of 9 12. Shin, J.; Kim, M.; Cirera, J.; Chen, S.; Halder, G.J.; Yersak, T.A.; Paesani, F.; Cohen, S.M.; Meng, Y.S. MIL-101 (Fe) as a lithium- ion battery electrode material: A relaxation and intercalation mechanism during lithium insertion. J. Mater. Chem. A 2015, 3, 4738–4744. [CrossRef] 13. Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188. [CrossRef] 14. Hafiz, H.; Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Callewaert, V.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Yamada, R.; Uchimoto, Y.; et al. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution X-ray Compton scattering. Sci. Adv. 2017, 3, e1700971. [CrossRef] 15. Kuriplach, J.; Pulkkinen, A.; Barbiellini, B. First-principles study of the impact of grain boundary formation in the cathode material LiFePO4. Condens. Matter 2019, 4, 80. [CrossRef] 16. Kmjecˇ, T.; Kohout, J.; Dopita, M.; Veverka, M.; Kuriplach, J. Mössbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures. Condens. Matter 2019, 4, 86. [CrossRef] 17. Yamada, T.; Shiraishi, K.; Kitagawa, H.; Kimizuka, N. Applicability of MIL-101 (Fe) as a cathode of lithium ion batteries. Chem. Commun. 2017, 53, 8215–8218. [CrossRef] 18. Jiang, Y.; Zhao, H.; Yue, L.; Liang, J.; Li, T.; Liu, Q.; Luo, Y.; Kong, X.; Lu, S.; Shi, X.; et al. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochem. Commun. 2021, 122, 106881. [CrossRef] 19. Xie, L.S.; Skorupskii, G.; Dinca ̆, M. Electrically Conductive Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8536–8580. [CrossRef] 20. Overgaard, J.; Larsen, F.K.; Schiøtt, B.; Iversen, B.B. Electron density distributions of redox active mixed valence carboxylate bridged trinuclear iron complexes. J. Am. Chem. Soc. 2003, 125, 11088–11099. [CrossRef] 21. Dutta, A.K.; Maji, S.K.; Dutta, S. A symmetric oxo-centered trinuclear chloroacetato bridged iron (III) complex: Structural, spectroscopic and electrochemical studies. J. Mol. Struct. 2012, 1027, 87–91. [CrossRef] 22. Boudalis, A.K.; Sanakis, Y.; Dahan, F.; Hendrich, M.; Tuchagues, J.P. An octanuclear complex containing the {Fe3O}7+ metal core: Structural, magnetic, Mössbauer, and electron paramagnetic resonance studies. Inorg. Chem. 2006, 45, 443–453. [CrossRef] 23. De Oliveira, A.; Mavrandonakis, A.; de Lima, G.F.; De Abreu, H.A. Cyanosilylation of Aldehydes Catalyzed by MIL-101 (Cr): A Theoretical Investigation. ChemistrySelect 2017, 2, 7813–7820. [CrossRef] 24. Mavrandonakis, A.; Vogiatzis, K.D.; Boese, A.D.; Fink, K.; Heine, T.; Klopper, W. Ab Initio Study of the Adsorption of Small Molecules on Metal–Organic Frameworks with Oxo-centered Trimetallic Building Units: The Role of the Undercoordinated Metal Ion. Inorg. Chem. 2015, 54, 8251–8263. [CrossRef] [PubMed] 25. Hu, T.D.; Sun, Y.W.; Ding, Y.H. A quantum-chemical insight on chemical fixation carbon dioxide with epoxides co-catalyzed by MIL-101 and tetrabutylammonium bromide. J. CO2 Util. 2018, 28, 200–206. [CrossRef] 26. Pourreza, A.; Askari, S.; Rashidi, A.; Seif, A.; Kooti, M. Highly efficient SO3Ag-functionalized MIL-101 (Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study. Chem. Eng. J. 2019, 363, 73–83. [CrossRef] 27. Barona, M.; Snurr, R.Q. Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. ACS Appl. Mater. Interfaces 2020, 12, 28217–28231. [CrossRef] 28. Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E.F.; Zelenay, P.; et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496–12505. [CrossRef] 29. Allerdt, A.; Hafiz, H.; Barbiellini, B.; Bansil, A.; Feiguin, A.E. Many-Body Effects in FeN4 Center Embedded in Graphene. Appl. Sci. 2020, 10, 2542. [CrossRef] 30. Tylus, U.; Jia, Q.; Hafiz, H.; Allen, R.; Barbiellini, B.; Bansil, A.; Mukerjee, S. Engendering anion immunity in oxygen consuming cathodes based on Fe-Nx electrocatalysts: Spectroscopic and electrochemical advanced characterizations. Appl. Catal. Environ. 2016, 198, 318–324. [CrossRef] 31. Mancuso, J.L.; Mroz, A.M.; Le, K.N.; Hendon, C.H. Electronic Structure Modeling of Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8641–8715. [CrossRef] 32. Mann, G.W.; Lee, K.; Cococcioni, M.; Smit, B.; Neaton, J.B. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks. J. Chem. Phys. 2016, 144, 174104. [CrossRef] [PubMed] 33. Rosen, A.S.; Notestein, J.M.; Snurr, R.Q. Comparing GGA, GGA+ U, and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks. J. Chem. Phys. 2020, 152, 224101. [CrossRef] [PubMed] 34. Trepte, K.; Schwalbe, S.; Seifert, G. Electronic and magnetic properties of DUT-8 (Ni). Phys. Chem. Chem. Phys. 2015, 17, 17122–17129. [CrossRef] 35. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. 36. Repisky, M.; Komorovsky, S.; Kadek, M.; Konecny, L.; Ekström, U.; Malkin, E.; Kaupp, M.; Ruud, K.; Malkina, O.L.; Malkin, V.G. ReSpect: Relativistic spectroscopy DFT program package. J. Chem. Phys. 2020, 152, 184101. [CrossRef] 37. Becke, A. Density-functional thermochemistry. III. The role of exact exchange Chem. Phys. 1993, 98, 5648. [CrossRef] 38. Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts 2008, 120, 215–241.

PDF Image | Electrochemical Potential MIL-101(Fe) as Cathode Material in Li-Ion Batteries

PDF Search Title:

Electrochemical Potential MIL-101(Fe) as Cathode Material in Li-Ion Batteries

Original File Name Searched:

condensedmatter-06-00022.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)