Electrochemical Potential MIL-101(Fe) as Cathode Material in Li-Ion Batteries

PDF Publication Title:

Electrochemical Potential MIL-101(Fe) as Cathode Material in Li-Ion Batteries ( electrochemical-potential-mil-101fe-as-cathode-material-li-i )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

Condens. Matter 2021, 6, 22 9 of 9 39. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [CrossRef] [PubMed] 40. Burke, K.; Perdew, J.P.; Wang, Y. Derivation of a generalized gradient approximation: The PW91 density functional. In Electronic Density Functional Theory; Springer: Berlin, Germany, 1998; pp. 81–111. 41. Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [CrossRef] 42. Vogiatzis, K.D.; Klopper, W.; Mavrandonakis, A.; Fink, K. Magnetic properties of paddlewheels and trinuclear clusters with exposed metal sites. ChemPhysChem 2011, 12, 3307. [CrossRef] 43. Yu, K.; Kiesling, K.; Schmidt, J. Trace flue gas contaminants poison coordinatively unsaturated metal–organic frameworks: implications for CO2 adsorption and separation. J. Phys. Chem. C 2012, 116, 20480–20488. [CrossRef] 44. Hou, X.J.; Li, H.; He, P. Theoretical investigation for adsorption of CO2 and CO on MIL-101 compounds with unsaturated metal sites. Comput. Theor. Chem. 2015, 1055, 8–14. [CrossRef] 45. Bigdeli, A.; Khorasheh, F.; Tourani, S.; Khoshgard, A.; Bidaroni, H.H. Removal of terephthalic acid from aqueous solution using metal-organic frameworks; A molecular simulation study. J. Solid State Chem. 2020, 282, 121059. [CrossRef] 46. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [CrossRef] 47. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [CrossRef] [PubMed] 48. Voss, J.M.; Marsh, B.M.; Zhou, J.; Garand, E. Interaction between ionic liquid cation and water: infrared predissociation study of [bmim]+·(H2O) n clusters. Phys. Chem. Chem. Phys. 2016, 18, 18905–18913. [CrossRef] 49. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [CrossRef] [PubMed] 50. Myrseth, V.; Bozek, J.; Kukk, E.; Sæthre, L.; Thomas, T. Adiabatic and vertical carbon 1s ionization energies in representative small molecules. J. Electron Spectrosc. Relat. Phenom. 2002, 122, 57–63. [CrossRef] 51. Young, D.C. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; John Wiley & Sons: Hoboken, NJ, USA, 2001. 52. Agusta, M.K.; Saputro, A.G.; Tanuwijaya, V.V.; Hidayat, N.N.; Dipojono, H.K. Hydrogen adsorption on Fe-based metal organic frameworks: DFT study. Procedia Eng. 2017, 170, 136–140. [CrossRef] 53. Zhou, F.; Cococcioni, M.; Marianetti, C.A.; Morgan, D.; Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Phys. Rev. B 2004, 70, 235121. [CrossRef] 54. Callaway, J.; Zou, X.; Bagayoko, D. Total energy of metallic lithium. Phys. Rev. B 1983, 27, 631. [CrossRef] 55. Férey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M.L.; Grenèche, J.M.; Tarascon, J.M. Mixed-valence Li/Fe-based metal–organic frameworks with both reversible redox and sorption properties. Angew. Chem. Int. Ed. 2007, 46, 3259–3263. [CrossRef] [PubMed] 56. Combelles, C.; Yahia, M.B.; Pedesseau, L.; Doublet, M.L. Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal- Organic Frameworks. J. Phys. Chem. C 2010, 114, 9518–9527. [CrossRef] 57. Barbiellini, B.; Platzman, P. The healing mechanism for excited molecules near metallic surfaces. New J. Phys. 2006, 8, 20. [CrossRef] 58. Kaupp, M.; von Schnering, H.G. Formal Oxidation State versus Partial Charge—A Comment. Angew. Chem. Int. Ed. Engl. 1995, 34, 986–986. [CrossRef] 59. Fukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754. [CrossRef]

PDF Image | Electrochemical Potential MIL-101(Fe) as Cathode Material in Li-Ion Batteries

PDF Search Title:

Electrochemical Potential MIL-101(Fe) as Cathode Material in Li-Ion Batteries

Original File Name Searched:

condensedmatter-06-00022.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)