logo

First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries

PDF Publication Title:

First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries ( first-principles-modeling-electrolyte-materials-all-solid-st )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

N.A.W. Holzwarth / Physics Procedia 57 (2014) 29 – 37 35 Key Li P S [0 1 0] surface of γ−Li3PS4 plus Li γ−Li3PS4 with Li2S buffer plus Li Fig. 5. Ball and stick diagrams of the relaxed geometry of a [0 1 0] surface of γ−Li3PS4 exposed to Li anode layers (left) compared with the relaxed geometry of the same surface prepared with an additional idealized buffer layer of Li2S. The key shown at the left indicates the ball conventions. References Andersen, H.C., 1980. Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics 72, 2384. von Barth, U., Gelatt, C.D., 1980. Validity of the frozen-core approximation and pseudopotential theory for cohesive energy calculations. Phys. Rev. B 21, 2222–2228. Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, D.F., Robertson, J.D., 1992. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56, 647–654. Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, D.F., Robertson, J.D., 1993. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. Journal of Power Sources 43–44, 103–110. Bates, J.B., Dudney, N.J., Lubben, D.C., Gruzalski, G.R., Kwak, B.S., Yu, X., Zuhr, R.A., 1995. Thin-film rechargeable lithium batteries. Journal of Power Sources 54, 58–62. Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A., Evans, C.D., 2000. Thin-film lithium and lithium-ion batteries. Solid State Ionics 135, 33–45. Bates, J.B., Gruzalski, G.R., Dudney, N.J., Luck, C.F., Yu, X., 1994. Rechargeable thin-film lithium batteries. Solid State Ionics 70–71, 619–628. Blo ̈chl, P.E., 1994. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979. Born, M., Huang, K., 1954. Dynamical Theory of Crystal Lattices. Oxford at the Clarendon Press, Oxford University Press, Ely House, London.I. Car, R., Parrinello, M., 1985. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474. Du, Y.A., Holzwarth, N.A.W., 2007. Mechanisms of Li+ diffusion in crystalline Li3PO4 electrolytes from first principles. Phys. Rev. B 76, 174302 (14 pp). Du, Y.A., Holzwarth, N.A.W., 2008a. Effects of O vacancies and N or Si substitutions on Li+ migration in Li3PO4 electrolytes from first principles. Phys. Rev. B 78, 174301. Du, Y.A., Holzwarth, N.A.W., 2008b. Li ion migration in Li3PO4 electrolytes: Effects of O vacancies and N substitutions. ECS Transactions 13, 75–82. Du, Y.A., Holzwarth, N.A.W., 2010a. First principles simulations of Li ion migration in materials related to LiPON electrolytes. ECS Trans. 25, 27–36. Du, Y.A., Holzwarth, N.A.W., 2010b. First-principles study of LiPON and related solid electrolytes. Phys. Rev. B 81, 184106 (15pp).

PDF Image | First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries

first-principles-modeling-electrolyte-materials-all-solid-st-007

PDF Search Title:

First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries

Original File Name Searched:

1-s2-0-S1875389214002727-main.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP