logo

First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries

PDF Publication Title:

First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries ( first-principles-modeling-electrolyte-materials-all-solid-st )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

36 N.A.W. Holzwarth / Physics Procedia 57 (2014) 29 – 37 Dudney, N.J., 2000. Addition of a thin-film inorganic solid electrolite (Lipon) as a protective film in lithium batteries with a liquid electrolyte. Journal of Power Sources 89, 176–179. Dudney, N.J., 2008. Thin film micro-batteries. Interface 17(3), 44–48. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., 2009. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 394402 (19pp). Available from the website http://www.quantum-espresso.org. Gonze, X., 1997. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate- gradient algorithm. Physical Review B 55, 10337. Gonze, X., Amadon, B., Anglade, P.M., Beuken, J.M., Bottin, F., Boulanger, P., Bruneval, F., Caliste, D., Caracas, R., Cote, M., Deutsch, T., Genovese, L., Ghosez, P., Giantomassi, M., Goedecker, S., Hamann, D.R., Hermet, P., Jollet, F., Jomard, G., Leroux, S., Mancini, M., Mazevet, S., Oliveira, M.J.T., Onida, G., Pouillon, Y., Rangel, T., Rignanese, G.M., Sangalli, D., Shaltaf, R., Torrent, M., Verstraete, M.J., Zerah, G., Zwanziger, J.W., 2009. Abinit: First-principles approach to material and nanosystem properties. Computer Physics Communications 180, 2582–2615. Code is available at the website http://www.abinit.org. Gonze, X., Lee, C., 1997. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density- functional perturbation theory. Physical Review B 55, 10355. Hahn, T. (Ed.), 2002. International Tables for Crystallography, Volume A: Space-group symmetry, Fifth revised edition. Kluwer. Hamann, D.R., Schlu ̈ter, M., Chiang, C., 1979. Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494–1497. Hamon, Y., Douard, A., Sabary, F., Marcel, C., Vinatier, P., Pecquenard, B., Levasseur, A., 2006. Influence of sputtering conditions on ionic conductivity of LiPON thin films. Solid State Ionics 177, 257–261. Harbach, F., Fischer, F., 1974. Raman spectra and optical absorption edge of Li3PO4 single crystals. Phys. Stat. Sol. (b) 66, 237–245. Hayashi, A., 2007. Preparation and characterization of glassy materials for all-solid-state lithium secondary batteries. Journal of the Ceramic Society of Japan 115, 110–117. Hayashi, A., Minami, K., Mizuno, F., Tatsumisago, M., 2008. Formation of Li+ superionic crystals from the Li2S-P2S5 melt-quench glasses. J. Mater. Sci. 43, 1885–1889. Hayashi, A., Minami, K., Tatsumisago, M., 2009. High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries. Journal of Non-crystalline Solids 355, 1919–1923. Hohenberg, P., Kohn, W., 1964. Inhomogeneous electron gas. Physical Review 136, B864–B871. Holzwarth, N.A.W., Lepley, N.D., Du, Y.A., 2011. Computer modeling of lithium phosphate and thiophosphate electrolyte materials. Journal of Power Sources 196, 6870–6876. Holzwarth, N.A.W., Tackett, A.R., Matthews, G.E., 2001. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions. Computer Physics Communications 135, 329–347. Available from the website http://pwpaw.wfu.edu. Huggins, R.A., 2009. Advanced Batteries; Materials Science Aspects. Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA. Kerker, G.P., 1980. Non-singular atomic pseudopotentials for solid state applications. J. Phys. C: Solid St. Phys. 13, L189–L194. Kim, Y.G., Wadley, H., 2009. Plasma-assisted deposition of lithium phosphorous oxynitride films: Substrate bias effects. Journal of Power Sources 187, 591–598. Kohn, W., Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review 140, A1133–A1138. Kokalj, A., 1999. XCrySDen– an new program for displaying crystalline structures and densities. Journal of Molecular Graphics and Modelling 17, 176–179. Code available at the website http://www.xcrysden.org. Kokalj, A., 2003. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science 28, 155–168. Lepley, N.D., Holzwarth, N.A.W., 2011. Computer modeling of crystalline electrolytes – lithium thiophosphates and phosphates. Transactions of the Electrochemical Society 35, 39–51. Lepley, N.D., Holzwarth, N.A.W., 2012. Computer modeling of crystalline electrolytes – lithium thiophosphates and phosphates. Journal of the Electrochemical Society 159, A538–A547. Lepley, N.D., Holzwarth, N.A.W., Du, Y.A., 2013. Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles. Phys. Rev. B 88, 104103 (11 pp). Liu, Z., Fu, W., Payzant, E.A., Yu, X., Wu, Z., Dudney, N.J., Kiggans, J., Hong, K., Rondinone, A.J., Liang, C., 2013. Anomalous high ionic conductivity of nanoporous -Li3PS4. Journal of the American Chemical Society 135, 975–978. Mascaraque, N., Fierro, J.L.G., Dura ́n, A., Mun ̃oz, F., 2013. An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses. Solid State Ionics 233, 73–79. Mavrin, B.N., Asonov, V.V., Fomichev, V.V., Ivanov-Shitz, A.K., Kireev, V.V., 2003. Raman scattering and interaction and interference of optical vibrations in a γ-Li3PO4 superionic crystal. Journal of Experimental and Theoretical Physics 96, 53–58. Minami, K., Hayashi, A., Tatsumisago, M., 2008. Electrical and electrochemical properties of the 70Li2s·(30 − x)P2S5·xP2O5 glass-ceramic electrolytes. Solid State Ionics 179, 1282–1285. Mizuno, F., Hayashi, A., Tadanaga, K., Tatsumisago, M., 2005a. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 17, 918–921. Mizuno, F., Hayashi, A., Tadanaga, K., Tatsumisago, M., 2005b. New lithium-ion conducting crystal obtained by crystallization of Li2S-P2S5 glasses. Electrochemical and Solid-State Letters 8, A603–A606.

PDF Image | First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries

first-principles-modeling-electrolyte-materials-all-solid-st-008

PDF Search Title:

First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries

Original File Name Searched:

1-s2-0-S1875389214002727-main.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP