logo

First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries

PDF Publication Title:

First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries ( first-principles-modeling-electrolyte-materials-all-solid-st )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

N.A.W. Holzwarth / Physics Procedia 57 (2014) 29 – 37 37 Mizuno, F., Ohtomo, T., Hayashi, A., Tadanaga, K., Tatsumisago, M., 2006. Lithium ion conducting solid electrolytes prepared from Li2S, elemental P and S. Solid State Ionics 177, 2753–2757. Momma, K., Izumi, F., 2011. Vesta 3 for three-dimensional visualization of crystal, volumetric, an morphology data. Applied Crystallography 44, 1272–1276. Code available from the website http://jp-minerals.org/vesta/en/. OpenDX, 1999. OpenDX – The Open Source Software Project Based on IBM’s Visualization Data Explorer – is available from the website http://www.opendx.org. Park, H.Y., Ham, S.C., Lim, Y.C., Choi, K.G., Lee, K.C., Park, G.B., Kim, S.R.L.H.P., Cho, S.B., 2006. Effects of sputtering pressure on the characteristics of lithium ion conductive lithium phosphorous oxynitride thin film. J. Electroceram. 17, 1023–1030. Parrinello, M., Rahman, A., 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics 52, 7182. Patil, A., Patil, V., Shin, D.W., Choi, J.W., Paik, D.S., Yoon, S.J., 2008. Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin 43, 1913–1942. Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868. Erratum – Phys. Rev. Let. 78, 1396 (1997). Perdew, J.P., Wang, Y., 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249. Phillips, J.C., Kleinman, L., 1959. New method for calculating wave functions in crystal and molecules. PRB 116, 287–294. Popovic ́, L., Manoun, B., de Wall, D., Nieuwoudt, M.K., Comins, J.D., 2003. Raman spectroscopic study of phase transitions in Li3PO4. Journal of Raman Spectroscopy 34, 77–83. Numerical values of the frequencies reported in this paper were obtained by manually digitizing the unlabeled peaks. Riedener, T., Shen, Y., Smith, R.J., Bray, K.L., 2000. Pressure induced phase transition and spectroscopy of Mn5+- doped Li3PO4. Chemical Physics Letters 321, 445–451. Senevirathne, K., Day, C.S., Gross, M.D., Lachgar, A., Holzwarth, N.A.W., 2013. A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure. Solid State Ionics 333, 95–101. Smith, R.J., Shen, Y., Bray, K.L., 2002. The effect of pressure on vibrational modes in li3po4. J. Phys.: Condens. Matter 14, 461–469. Takada, K., 2013. Progress and prospective of solid-state lithium batteries. Acta Materialia 61, 759–770. Tarte, P., 1967. Isomorphism and polymorphism of the compounds Li3POi4, Li3AsO4, and Li3VO4. Journal of Inorganic and Nuclear Chemistry 29, 915–923. Tatsumisago, M., Hayashi, A., 2008. Preparation of lithium ion conducting glasses and glass-ceramics for all-solid-state batteries. Journal of Non-Crystalline Solids 354, 1411–1417. Trevey, J., Jang, J.S., Jung, Y.W., Stoldt, C.R., Lee, S.H., 2009. Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries. Electrochemistry Communications 11, 1830–1833. Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895. USPP code is available from the website http://www.physics.rutgers.edu/ dhv/uspp/. Wang, B., Bates, J.B., Hart, F.X., Sales, B.C., Zuhr, R.A., Robertson, J.D., 1996. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. Journal of The Electrochemical Society 143, 3203–3213. Wang, B., Chakoumakos, B.C., Sales, B.C., Kwak, B.S., Bates, J.B., 1995a. Synthesis, crystal structure, and ionic conductivity of a polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4 structure. Journal of Solid State Chemistry 115, 313–323. Wang, B., Kwak, B.S., Sales, B.C., Bates, J.B., 1995b. Ionic conductivities and structure of lithium phosphorus oxynitride glasses. Journal of Non-Crystalline Solids 183, 297–306. Wentzcovitch, R.M., 1991. Invariant molecular-dynamics approach to structural phase transitions. Physical Review B 44, 2358. Yamane, H., Shibata, M., Shimane, Y., Junke, T., Seino, Y., Adams, S., Minami, K., Hayashi, A., Tatsumisago, M., 2007. Crystal structure of a superionic conductor Li7P3S11. Solid State Ionics 178, 1163–1167. Yu, X., Bates, J.B., G. E. Jellison, J., Hart, F.X., 1997. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. Journal of the Electrochemical Society 144, 524–532.

PDF Image | First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries

first-principles-modeling-electrolyte-materials-all-solid-st-009

PDF Search Title:

First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries

Original File Name Searched:

1-s2-0-S1875389214002727-main.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP