logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 027

36. Kim, S.Y.; Ostadhossein, A.; van Duin, A.C.T.; Xiao, X.; Gaoe, H.; Qi, Y., Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation, Phys. Chem. Chem. Phys., 2016,18, 3706-3715. 37. Aykol, M.; Kim, S.; Hegde, V.I.; Snydacker, D.; Lu, Z.; Hao, S.; Kirklin, S.; Morgan, D.; Wolverton, C., High-throughput computational design of cathode coatings for Li-ion batteries, Nat. Commun., 2016, 7, 13779. 38. Long, A.W.; Zhang, J.; Granick, S.; Ferguson, A.L., Machine learning assembly landscapes from particle tracking data, Soft Matter, 2015, 11 (41), 8141. 39. De, S.; Bartok, A.P.; Csanyi, G.; Ceriotti, M., Comparing molecules and solids across structural and alchemical space, Phys. Chem. Chem. Phys., 2016, 18 (20), 13754. 40. Fernandez, M.; Shi, H.; Barnard, A.S., Geometrical features can predict electronic properties of graphene nanoflakes, Carbon, 2016, 103, 142. 41. Raccuglia, P.; Elbert, K.C.; Adler, P.D.F.; Falk, C.; Wenny, M.B.; Mollo, A.; Zeller, M.; Friedler, S.A.; Schrier, J.; Norquist, A.J., Machine-learning- assisted materials discovery using failed experiments, Nature, 2016, 533 (7601), 73. 42. Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C., A general-purpose machine learning framework for predicting properties of inorganic materials, Npj Comput. Mater., 2016, 2, 16028. 43. Pikul, J.; Zhang, H.; Cho, J.; Braun, P.V.; King, W.P., High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes, Nature Comm., 2013, 4, 1732, DOI: 10.1038/ncomms2747. 44. Arthur, T.S.; Bates, D.J.; Cirigliano, N.; Johnson, D.C.; Malati, P.; Mosby, J.M.; Perre, E.; Rawls , M.T.; Prieto, A.L.; Dunn, B., Three-dimensional electrodes and battery architectures, MRS Bulletin, 2011, 36 (07), 523. 45. Dudney, N.J., Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B, 2005, 116 (3) 245-249, 10.1016/j.mseb.2004.05.045. 46. Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G.T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; Mo, Y.; Thangadurai, V.; Wachsman, E.D.; Hu, L., Negating Interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 2016, 16, 572-579, DOI: 10.1038/nmat4821. 47. Chen, R.J.; Qu, W.J.; Guo, X.; Li, L.; Wu, F., The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons, Mater. Horizons, 2016, 3 (6), 487. 48. Bachman, J.C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S.F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P., Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction, Chem. Rev., 2016, 116 (1), 140. 49. Pearse, A.J.; Schmitt, T.E.; Fuller, E.J.; El-Gabaly, F.; Lin, C.F.; Gerasopoulos, K.; Kozen, A.C.; Talin, A.A.; Rubloff, G.; Gregorczyk, K.E., Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte, Chem. Mater., 2017, 29 (8), 3740. 50. Kazyak, E.; Chen, K.H.; Wood, K.N.; Davis, A.L.; Thompson, T.; Bielinski, A.R.; Sanchez, A.J.; Wang, X..; Wane, C.M..; Sakamoto, J.; Dasgupta, N.P., Atomic layer deposition of the solid electrolyte carnet Li7La3Zr2O12, Chem. Mater., 2017, 29 (8), 3785. 51. Han, F.D.; Zhu, Y.Z.; He, X.F.; Mo, Y.F.; Wang, C.S., Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes, Adv. Energy Mater., 2016, 6 (8), 9 (and reference 21 therein). 52. Sicolo, S.; Albe, K., First-principles calculations on structure and properties of amorphous Li5P4O8N3 (LiPON), J. Power Sources, 2016, 331, 382. 53. Schwobel, A.; Hausbrand, R.; Jaegermann, W., Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission, Solid State Ion., 2015, 273, 51. 54. Sharafi, A.; Kazyak, E.; Davis, A.L.;, Yu, S.; Thompson, T.; Siegel, D.J.; Dasgupta, N.P.; Sakamoto, J., Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12, Chemistry of Materials, 2017, 29, 7961-7968, DOI: 10.1021/acs.chemmater.7b03002. 55. Porz, L.; Swamy, T.; Sheldon, B.W.; Rettenwander, D.; Frömling, T.; Thaman, H.L.; Berendts, S.; Uecker, R.; Carter, W.C.; Chiang, Y.-M., Mechanism of lithium metal penetration through inorganic solid electrolytes, Adv. Energy Mater. 2017, 1701003, DOI:10.1002/aenm.201701003 and references 21, 22, and 26 therein. 56. Larcher, D.; Tarascon, J.M., Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 2015, 7, 19-29, DOI: 10.1038/nchem.2085. 57. Liang, Y.; Tao, Z.; Chen, J., Organic electrode materials for rechargeable lithium batteries, Adv. Energy Mater., 2012, 2, 742-769, DOI: 10.1002/aenm.201100795. 58. Lin, K.; Chen, Q.; Gerhardt, M.R.; Tong, L.; Kim, S.B.; Eisenach, L.; Valle, A.W.; Hardee, D.; Gordon, R.G.; Aziz, M.J.; Marshak, M.P., Alkaline quinone flow battery, Science, 2015, 349, 1529, DOI: 10.1126/science.aab3033. 59. Huskinson, B.; Marshak, M.P.; Suh, C.; Er, S.; Gerhardt, M.R.; Galvin, C.J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R.G.; Aziz, M.J., A metal-free organic-inorganic aqueous flow battery, Nature, 2014, 505, 195-198, DOI: 10.1038/nature12909. 60. Winter, M.; Brodd, R.J., What are batteries, fuel cells, and supercapacitors? Chem. Rev., 2004, 104, 4245-4270, DOI: 10.1021/cr020730k. 61. Alfaruqi, M.H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J.P.; Choi, S.H.; Kim, J., Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system, Chem. Mater.,2015, 27, 3609-3620, DOI: 10.1021/cm504717p. 62. Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K.T.; Liu, J., Reversible aqueous zinc/ manganese oxide energy storage from conversion reactions, Nat. Energy, 2016, 1, 16039, DOI: 10.1038/nenergy.2016.39. 63. Xu, C.; Li, B.; Du, H.; Kang, F., Energetic zinc ion chemistry: The rechargeable zinc ion battery, Ang. Chem. Int. Ed., 2012, 51, 933-935, DOI: 10.1002/anie.201106307. 64. Trócoli, R.; La Mantia, F., An aqueous zinc-ion battery based on copper hexacyanoferrate, ChemSusChem, 2015, 8, 481-485, DOI: 10.1002/ cssc.201403143. 65. Zhang, L.; Chen, L.; Zhou, X.; Liu, Z., Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system, Adv. Energy Mater., 2015, 5, 1400930-n/a, DOI: 10.1002/aenm.201400930. 66. Alfaruqi, M.H.; Gim, J.; Kim, S.; Song, J.; Pham, D.T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J., A layered δ-Mno2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications, Electrochem. Commun., 2015, 60, 121-125, DOI: 10.1016/j.elecom.2015.08.019. 67. Lee, J.; Ju, J.B.; Cho, W.I.; Cho, B.W.; Oh, S.H., Todorokite-type MnO2 as a zinc-ion intercalating material, Electrochim. Acta, 2013, 112, 138-143, DOI: 10.1016/j.electacta.2013.08.136. 68. Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nature Energy, 2016. 1, 16119. 69. Senguttuvan, P.; Han, S.-D.; Kim, S.; Lipson, A.L.; Tepavcevic, S.; Fister, T.T.; Bloom, I.D.; Burrell, A.K.; Johnson, C.S., A high power rechargeable nonaqueous multivalent Zn/V2O5 battery, Adv. Energy Mater., 2016, 6, 1600826, DOI: 10.1002/aenm.201600826. NEXT GENERATION ELECTRICAL ENERGY STORAGE PRIORITY RESEARCH DIRECTION – 1 21

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-027

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP