logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 028

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP 70. Cheng, Y.; Luo, L.; Zhong, L.; Chen, J.; Li, B.; Wang, W.; Mao, S.X.; Wang, C.; Sprenkle, V.L.; Li, G.; Liu, J., Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries, ACS Appl. Mater. Interfaces, 2016, 8, 13673-13677, DOI: 10.1021/acsami.6b03197. 71. Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 2015, 350 (6263), 938. 72. Wessells, C.; Ruffo, R.; Huggins, R.A.; Cui, Y., Investigations of the electrochemical stability of aqueous electrolytes for lithium battery applications, Electrochem. Solid-State Lett., 2010, 13, A59-A61, DOI: 10.1149/1.3329652. 73. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater., 2017, 2, 16103, DOI: 10.1038/ natrevmats.2016.103. 74. Yu, X.; Gross, M.M.; Wang, S.; Manthiram, A., Aqueous electrochemical energy storage with a mediator-ion solid electrolyte, Adv. Energy Mater., 2017, 1602454, DOI: 10.1002/aenm.201602454. 75. Li, L.; Manthiram, A., Long-life, high-voltage acidic Zn–Air batteries, Adv. Energy Mater., 2016, 6, 1502054, DOI: 10.1002/aenm.201502054. 76. Palacín, M.R.; de Guibert, A., Why do batteries fail? Science, 2016, 351, 1253292; DOI 10.1126/science.1253292. 77. Moseley, P.T.; Rand, D A.J.; Monahov, B., Designing lead-acid batteries to meet energy and power requirements of future, J. Power Sources, 2012, 219, 75-79; DOI: 10.1016/j.jpowsour.2012.07.040. 78. Banerjee, A.; Ziv, B.; Shilina, Y.; Levi, E.; Luski, S.; Aurbach, D., Single-wall carbon nanotube doping in lead-acid batteries: A new horizon, ACS Appl. Mater. Interfaces, 2017, 9, 3634-3643; DOI: 10.1021/acsami.6b13377. 22 PRIORITY RESEARCH DIRECTION – 1

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-028

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP