logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 041

2.2.3 REFERENCES 1. Lu, J.; Wu, T.P.; Amine, K., State-of-the-art characterization techniques for advanced lithium-ion batteries, Nature Ener., 2017, 2 (3), 17011. 2. Nelson Weker, J.; Toney, M.F., Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials, Adv. Funct. Mater., 2015, 25 (11), p. 1622. 3. Liu, X., Yang, W. and Liu, Z., Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials, Adv. Mater., 2014, 26, 7710–7729, DOI:10.1002/adma.201304676. 4. Wang, C.-M., In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view, J. Mater. Res., 2015, 30 (3), 326. 5. Grey, C.P; Tarascon, J.M., Sustainability and in situ monitoring in battery development, Nature Mater., 2016, 16 (1), 45. 6. Lim, J.; Li, Y.Y.; Alsem, D.H.; So, H.; Lee, S.C.; Bai, P.; Cogswell, D.A.; Liu, X.Z.; Jin, N.; Yu, Y.S.; Salmon, N.J.; Shapiro, D.A.; Bazant, M.Z.; Tyliszczak, T,; Chueh, W.C., Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles, Science, 2016, 353 (6299), 566. 7. Wolf, M.; May, B.; Cabana, J., Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping, Chem. Mater., 2017, 29, 3347-3362, DOI: 10.1021/acs.chemmater.6b05114. 8. Van der Ven, A.; Bhattacharya, J.; Belak, A.A., Understanding Li diffusion in Li-intercalation compounds, Acc. Chem. Res., 2013, 46 (5), 1216-1225, DOI: 10.1021/ar200329r. 9. Wang, H.; Wang, X.; Xia, S.; Chew, H.B., Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth, J. Phys. Chem., 2015, 143, 104703. 10. Ulvestad, A.; Cho, H.M.; Harder, R.; Kim, J.W.; Dietze, S.H.; Fohtung, E.; Meng, Y.S.; Shpyrko, O.G., Nanoscale strain mapping in battery nanostructures, Appl. Phys. Lett., 2014, 104, 073108. 11. Villevieille, C.; Ebner, M.; Gómez-Cámer, J.L.; Marone, F.; Novák, P.; Wood, V., Influence of conversion material morphology on electrochemistry studied with operando X-ray tomography and diffraction, Adv. Mater., 2015, 27, 1676–1681. 12. Come J.; Xie Y.; Naguib M.; Jesse S.; Kalinin S.V.; Gogotsi Y.; Kent P.R.C.; Balke N., Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes, Adv. Energy Mater., 2016, 6, 1502290. DOI: 10.1002/aenm.201502290. 13. Orsini, F.; Du Pasquier, A.; Beaudoin, B.; Tarascon, J.M.; Trentin, M.; Langenhuizen, N.; De Beer, E.; Notten, P., In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries, J. Power Sources, 1998, 76, 19-29. 14. Lu, D.; Shao, Y.; Lozano, T.; Bennett, W.D.; Graff, G.L.; Polzin, B.; Zhang, J.; Engelhard, M.H.; Saenz, N.T.; Henderson, W.A.; Bhattacharya, P.; Liu, J.; Xiao, J., Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes, Adv. Energy Mater., 2014, 5, 1400993, DOI: 10.1002/ aenm.201400993. 15. Amatucci, G.G.; Tarascon, J.M.; Klein, L.C., CoO2, the end member of the LixCoO2 solid solution, J. Electrochem. Soc., 1996, 143 (3), 1114-1123, DOI:10.1149/1.1836594. 16. White, E.R.; Singer, S.B.; Augustyn, V.; Hubbard, W.A.; Mecklenburg, M.; Dunn, B.; Regan, B.C., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution, ACS Nano, 2012, 6 (7), 6308-6317, DOI: 10.1021/nn3017469. 17. Lu, J.; Wu, T.; Amine, K., State-of-the-art characterization techniques for advanced lithium-ion batteries, Nature Ener., 2017, 2, 17011, DOI:10.1038/ nenergy.2017.11. 18. Gu, M.; Parent, L.R.; Mehdi, B.L.; Unocic, R.R.; McDowell, M.T.; Sacci, R.L.; Xu, W.; Connell, J.G.; Xu, P.H.; Abellan, P.; Chen, X.L.; Zhang, Y.H.; Perea, D.E.; Evans, J.E.; Lauhon, L.J.; Zhang, J.G.; Liu, J.; Browning, N.D.; Cui, Y.; Arslan, I.; Wang, C.M., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes, Nano Lett., 2013, 13 (12), 6106-6112. 19. Pecher, O.; Vyalikh, A.; Grey, C.P., Challenges and new opportunities of in situ NMR characterization of electrochemical processes, AIP Conference Proc., 2016, 1765, 020011, DOI: http://dx.doi.org/10.1063/1.4961903. 20. Balke, N.; Jesse, S.; Kim, Y.; Adamczyk, L.; Tselev, A,; Ivanov, I.N.; Dudney, N.J.; Kalinin, S.V., Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution, Nano Lett., 2010, 10 (9), 3420-3425, DOI: 10.1021/nl101439x. 21. Epp, V.; Ma, Q.; Hammer, E.-M.; Tietz, F.; Wilkening, M., Very fast bulk Li ion diffusivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry, Phys. Chem. Chem. Phys., 2015,17, 32115-32121. 22. Grey, C.P.; Dupré, N., NMR studies of cathode materials for lithium-ion rechargeable batteries, Chem. Rev., 2004, 104 (10), 4493-4512, DOI: 10.1021/cr020734p. 23. Qi, Y.; Hector, Jr., L.G.; James, C.; Kim, K.J., Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations, J. Electrochem. Soc., 2014, 161, F3010-F3018. 24. Bhadra, S.; Hsieh, A.G.; Wang, M.J.; Hertzberg, B.J.; Steingart, D.A., Anode characterization in zinc-manganese dioxide AA alkaline batteries using electrochemical-acoustic time-of-flight analysis, J. Electrochem. Soc., 2016, 163 (6), A1050-A1056. 25. Juhás, P.; Farrow, C.L; Yang, X.; Knox, K.R; Billinge, S.J., Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems, Acta Cryst., 2015, A71, 562-568. 26. Li, Y.; Zakharov, D.; Zhao, S; Tappero, R.; Jung, U.; Elsen, A.; Baumann, P.; Nuzzo, R.G.; Stach, E.A.; Frenkel, A., Complex structural dynamics of nanocatalysts revealed in operando conditions by correlated imaging and spectroscopy probes, Nature Commun., 2015, 6, 7583, DOI:10.1038/ ncomms8583. 27. Wolf, M.; May, B.; Cabana, J., Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping, Chem. Mater., 2017, 29, 3347-3362, DOI: 10.1021/acs.chemmater.6b05114. 28. See, K.A. ; Leskes, M.; Griffin, J.M.; Britto, S.; Matthews, P.D.; Emly, A.; Van der Ven, A.; Wright, D.S.; Morris, A.J.; Grey, C.P.; Seshadri, R., Ab initio structure search and in situ Li NMR studies of discharge products in the Li–S battery system, J. Amer. Chem. Soc., 2014, 136 (46), 16368-16377. 29. Blanc, F.; Leskes, M.; Grey, C.P., Solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors, and fuel cells, Acc. Chem. Res., 2013, 46 (9), 1952-1963. 30. Vijayakumar, M.; Kerisit, S.; Yang, Z.; Graff, G.L.; Liu, L.; Sears, J.A.; Burton, S.D.; Rosso, K.M.; Hu, J., Combined 6,7Li NMR and molecular dynamics study of Li diffusion in Li2TiO3, J. Phys. Chem. C, 2009, 113, 20108-20116. 31. Lu, P.; Harris, S.J., Lithium transport within the solid electrolyte interphase, Electrochem. Commun., 2011, 13 (10), 1035-1037. 32. Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Hector, Jr., L.G.; Li, H.; Harris, S.J., Direct calculation of Li-ion transport in the solid electrolyte interphase, J. Amer. Chem. Soc., 2012, 134 (37), 15476-15487, DOI: 10.1021/ja305366r. 33. Leitner, M.; Sepiol, B.; Stadler, L.M.; Pfau, B.; Vog, G., Atomic diffusion studied with coherent X-rays, Nature Mater., 2009, 8, 717-720. NEXT GENERATION ELECTRICAL ENERGY STORAGE PRIORITY RESEARCH DIRECTION – 2 35

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-041

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP