logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 042

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP 34. Carnis, J.; Cha, W.; Wingert, J.; Kang, J.; Jiang, Z.; Song, S.; Sikorski, M.; Robert, A.; Gutt, C.; Chen, C.W.; Dai, Y.; Ma, Y.; Guo, H.; Lurio, L.B.; Shpyrko, O.; Narayanan, S.; Cui, M.; Kosif, I.; Emrick, T.; Russell, T.P.; Lee, H.C.; Yu, C.-J.; Grübel, G.; Sinha, S.K.; Kim, H., Demonstration of feasibility of X-ray free electron laser studies of dynamics of nanoparticles in entangled polymer melts, Scientific Reports, 2014, 4, 6017. 35. Yang, R.; Leisch, J.; Strasser, P.; Toney, M.F., Structure of dealloyed PtCu3 thin films and catalytic activity for oxygen reduction, Chem. Mater., 2010, 22 (16), 4712–4720. 36. Cao, C.; Steinrück, H.G.; Shyam, B.; Stone, K.H.; Toney, M.F., In-situ study of silicon electrode lithiation with X-ray reflectivity, Nano Lett., 2016, 16, 7394-7401, DOI: 10.1021/acs.nanolett.6b02926. 37. Veith, G. M.; Doucet, M.; Baldwin, J.K.; Sacci, R.L.; Fears, T.M.; Wang, Y.; Browning, J.F., Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode, J. Phys. Chem. C, 2015, 119, 20339 (2015). 38. Fister, T.T.; Esbenshade, J.; Chen, X.; Long, B.R.; Shi, B.; Schlepütz, C.M.; Gewirth, A.A.; Bedzyk, M.J.; Fenter, P., Lithium intercalation behavior in multilayer silicon electrodes, Adv. Energy Mater., 2014, 4, 1301494, DOI: 10.1002/aenm.201301494. 39. Huang, J.Y.; Zhong, L.; Wang, C.M.; Sullivan, J.P.; Xu, W.; Zhang, L.Q.; Mao, S.X.; Hudak, N.S.; Liu, X. H.; Subramanian, A.; Fan, H.; Qi, L.; Kushima, A.; Li, J., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 2010, 330, 1515, DOI: 10.1126/ science.1195628. 40. Wang, C.M., In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view, J. Mater. Res., 2015, 30, 326, DOI: 10.1021/acs.accounts.6b00330. 41. Wiemers-Meyer, S.; Winterab, M.; Nowak, S., A battery cell for in situ NMR measurements of liquid electrolytes, Phys. Chem. Chem. Phys., 2017, 19, 4962-4966. 36 PRIORITY RESEARCH DIRECTION – 2

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-042

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP