logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 097

16. Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K., “Water-in-Salt” Electrolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Science, 2015, 350, 938, DOI: 10.1126/science.aab1595. 17. Soloveichik, G.L., Flow Batteries: Current Status and Trends. Chem. Rev., 2015, 115, 11533-11558, DOI: 10.1021/cr500720t. 18. Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W., Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nature Mater., 2005, 4, 366-377, DOI: 10.1038/nmat1368. 19. Ellis, B.; Kan, W.H.; Makahnouk, W.R.M.; Nazar, L.F., Synthesis of Nanocrystals and Morphology Control of Hydrothermally Prepared LiFePO4. J. Mater. Chem., 2007, 17, 3248-3254, DOI: 10.1039/B705443M. 20. Kang, B.; Ceder, G., Battery Materials for Ultrafast Charging and Discharging. Nature, 2009, 458, 190-193, DOI: 10.1038/nature07853. 21. Sun, Y.-K.; Chen, Z.; Noh, H.-J.; Lee, D.-J.; Jung, H.-G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S.-T.; Amine, K., Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries. Nature Mater., 2012, 11, 942-947, DOI: 10.1038/nmat3435. 22. Doyle, M.; Newman, J., The Use of Mathematical Modeling in the Design of Lithium/Polymer Battery Systems. Electrochim. Acta, 1995, 40, 2191-2196, DOI: 10.1016/0013-4686(95)00162-8. 23. Long, J.W.; Dunn, B.; Rolison, D.R.; White, H.S., Three-Dimensional Battery Architectures. Chem. Rev., 2004, 104, 4463-4492, DOI: 10.1021/ cr020740l. 24. Rolison, D.R.; Long, J.W.; Lytle, J.C.; Fischer, A.E.; Rhodes, C.P.; McEvoy, T.M.; Bourg, M.E.; Lubers, A.M., Multifunctional 3D Nanoarchitectures for Energy Storage and Conversion. Chem. Soc. Rev., 2009, 38, 226-252, DOI: 10.1039/B801151F. 25. Zhang, H.; Yu, X.; Braun, P.V., Three-Dimensional Bicontinuous Ultrafast-Charge and -Discharge Bulk Battery Electrodes. Nature Nanotechnol., 2011, 6, 277-281, DOI: 10.1038/nnano.2011.38. 26. Wang, Z.; Fierke, M.A.; Stein, A., Porous Carbon/Tin (IV) Oxide Monoliths as Anodes for Lithium-Ion Batteries. J. Electrochem. Soc., 2008, 155, A658-A663, DOI: 10.1149/1.2953497. 27. Liu, J.; Zheng, Q.; Goodman, M.D.; Zhu, H.; Kim, J.; Krueger, N.A.; Ning, H.; Huang, X.; Liu, J.; Terrones, M.; Braun, P.V., Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes. Adv. Mater., 2016, 28, 7696-7702, DOI: 10.1002/adma.201600829. 28. Nyström, G.; Marais, A.; Karabulut, E.; Wågberg, L.; Cui, Y.; Hamedi, M.M., Self-Assembled Three-Dimensional and Compressible Interdigitated Thin-Film Supercapacitors and Batteries. Nature Commun., 2015, 6, 7259, DOI: 10.1038/ncomms8259. 29. Zhang, H.; Hussain, I.; Brust, M.; Butler, M.F.; Rannard, S.P.; Cooper, A.I., Aligned Two- and Three-Dimensional Structures by Directional Freezing of Polymers and Nanoparticles. Nature Mater., 2005, 4, 787-793, DOI: 10.1038/nmat1487. 30. Zhang, H.; Cooper, A.I., Aligned Porous Structures by Directional Freezing. Adv. Mater., 2007, 19, 1529-1533, DOI: 10.1002/adma.200700154. 31. Tang, Y.F.; Zhao, K.; Wei, J.Q.; Qin, Y.S., Fabrication of Aligned Lamellar Porous Alumina Using Directional Solidification of Aqueous Slurries with an Applied Electrostatic Field. J. Eur. Ceram. Soc., 2010, 30, 1963-1965, DOI: 10.1016/j.jeurceramsoc.2010.03.012. 32. Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V.S.; Wang, L.; Yang, W., Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes. Adv. Mater., 2011, 23, 4679-4683, DOI: 10.1002/adma.201102421. 33. Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L.-W.; Battaglia, V. S.; Yang, W.; Liu, G. Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes. J. Am. Chem. Soc., 2013, 135, 12048-12056, DOI: 10.1021/ ja4054465. 34. Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M.T.; Bao, Z.; Cui, Y., Stable Li-Ion Battery Anodes by in-Situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparticles. Nature Commun., 2013, 4, 1943, DOI: 10.1038/ncomms2941. 35. Shi, Y.; Zhang, J.; Pan, L.; Shi, Y.; Yu, G., Energy Gels: A Bio-Inspired Material Platform for Advanced Energy Applications. Nano Today, 2016, 11, 738-762, DOI: 10.1016/j.nantod.2016.10.002. 36. Shi, Y.; Zhang, J.; Bruck, A.M.; Zhang, Y.; Li, J.; Stach, E.A.; Takeuchi, K.J.; Marschilok, A.C.; Takeuchi, E.S.; Yu, G., A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries. Adv. Mater., 2017, 1603922, DOI: 10.1002/adma.201603922. 37. Zhang, H.; Ning, H.; Busbee, J.; Shen, Z.; Kiggins, C.; Hua, Y.; Eaves, J.; Davis III, J.; Shi, T.; Shao, Y.-T.; Zuo, J.M.; Hong, X.; Chan, Y.; Wang, S.; Wang, P.; Sun, P.; Xu, S.; Liu, J.; Braun, P.V., Electroplating Lithium Transition Metal Oxides. Science Advances, 2017, 3, e1602427. 38. Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.-L.; Tolbert, S.H.; Abruña, H.D.; Simon, P.; Dunn, B., High-Rate Electrochemical Energy Storage through Li+ Intercalation Pseudocapacitance. Nature Mater., 2013, 12, 518-522, DOI: 10.1038/nmat3601. 39. Obrovac, M.N.; Chevrier, V.L., Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev., 2014, 114, 11444-11502, DOI: 10.1021/cr500207g. 40. McDowell, M.T.; Lee, S.W.; Nix, W.D.; Cui, Y., 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Adv. Mater., 2013, 25, 4966-4985, DOI: 10.1002/adma.201301795. 41. Whittingham, M.S., Ultimate Limits to Intercalation Reactions for Lithium Batteries. Chem. Rev., 2014, 114, 11414-11443, DOI: 10.1021/cr5003003. 42. Simon, P.; Gogotsi, Y., Materials for Electrochemical Capacitors. Nature Mater., 2008, 7, 845-854, DOI: 10.1038/nmat2297. 43. Augustyn, V.; Simon, P.; Dunn, B., Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage. Energy Environ. Sci., 2014, 7, 1597-1614, DOI: 10.1039/C3EE44164D. 44. Liu, C.; Gillette, E.I.; Chen, X.; Pearse, A.J.; Kozen, A.C.; Schroeder, M.A.; Gregorczyk, K.E.; Lee, S.B.; Rubloff, G.W., An All-in-One Nanopore Battery Array. Nature Nanotechnol., 2014, 9, 1031-1039, DOI: 10.1038/nnano.2014.247. 45. Augustyn, V.; White, E.R.; Ko, J.; Gruner, G.; Regan, B.C.; Dunn, B., Lithium-Ion Storage Properties of Titanium Oxide Nanosheets. Mater. Horiz., 2014, 1, 219-223, DOI: 10.1039/C3MH00070B. 46. Zhu, Y.; Peng, L.; Chen, D.; Yu, G., Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage. Nano Lett., 2016, 16, 742-747, DOI: 10.1021/acs.nanolett.5b04610. 47. Lukatskaya, M.R.; Mashtalir, O.; Ren, C.E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P.L.; Naguib, M.; Simon, P.; Barsoum, M.W.; Gogotsi, Y., Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science, 2013, 341, 1502, DOI: 10.1126/science.1241488. 48. Wang, X.; Weng, Q.; Yang, Y.; Bando, Y.; Golberg, D., Hybrid Two-Dimensional Materials in Rechargeable Battery Applications and Their Microscopic Mechanisms. Chem. Soc. Rev., 2016, 45, 4042-4073, DOI: 10.1039/C5CS00937E. 49. Peng, L.; Peng, X.; Liu, B.; Wu, C.; Xie, Y.; Yu, G., Ultrathin Two-Dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors. Nano Lett., 2013, 13, 2151-2157, DOI: 10.1021/nl400600x. 50. Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V., Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science, 2015, 347, DOI: 10.1126/science.1246501. NEXT GENERATION ELECTRICAL ENERGY STORAGE PANEL 1 REPORT 91

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-097

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP