logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 098

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP 51. Peng, L.; Zhu, Y.; Chen, D.; Ruoff, R.S.; Yu, G., Two-Dimensional Materials for Beyond-Lithium-Ion Batteries. Adv. Energy Mater., 2016, 6, 1600025, DOI: 10.1002/aenm.201600025. 52. Lukatskaya, M.R.; Dunn, B.; Gogotsi, Y., Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage. Nature Commun., 2016, 7, 12647, DOI: 10.1038/ncomms12647. 53. Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y., 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater., 2017, 2, 16098, DOI: 10.1038/natrevmats.2016.98. 54. Zhao, Y.; Ding, Y.; Li, Y.; Peng, L.; Byon, H.R.; Goodenough, J.B.; Yu, G., A Chemistry and Material Perspective on Lithium Redox Flow Batteries Towards High-Density Electrical Energy Storage. Chem. Soc. Rev., 2015, 44, 7968-7996, DOI: 10.1039/C5CS00289C. 55. Park, M.; Ryu, J.; Wang, W.; Cho, J., Material Design and Engineering of Next-Generation Flow-Battery Technologies. Nat. Rev. Mater., 2016, 2, 16080, DOI: 10.1038/natrevmats.2016.80. 56. Wei, X.; Xu, W.; Huang, J.; Zhang, L.; Walter, E.; Lawrence , C.; Vijayakumar, M.; Henderson, W.A.; Liu, T.; Cosimbescu, L.; Li, B.; Sprenkle, V.; Wang, W., Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. Ang. Chem. Int. Ed., 2015, 54, 8684-8687, DOI: 10.1002/anie.201501443. 57. Ding, Y.; Li, Y.; Yu, G., Exploring Bio-Inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study. Chem 2016, 1, 790-801, DOI: 10.1016/j.chempr.2016.09.004. 58. Lin, K.; Chen, Q.; Gerhardt, M.R.; Tong, L.; Kim, S.B.; Eisenach, L.; Valle, A.W.; Hardee, D.; Gordon, R.G.; Aziz, M. J.; Marshak, M.P., Alkaline Quinone Flow Battery. Science, 2015, 349, 1529, DOI: 10.1126/science.aab3033. 59. Montoto, E.C.; Nagarjuna, G.; Hui, J.; Burgess, M.; Sekerak, N.M.; Hernández-Burgos, K.; Wei, T.-S.; Kneer, M.; Grolman, J.; Cheng, K.J.; Lewis, J.A.; Moore, J.S.; Rodríguez-López, J., Redox Active Colloids as Discrete Energy Storage Carriers. J. Am. Chem. Soc., 2016, 138, 13230-13237, DOI: 10.1021/jacs.6b06365. 60. Fan, F.Y.; Woodford, W.H.; Li, Z.; Baram, N.; Smith, K.C.; Helal, A.; McKinley, G.H.; Carter, W.C.; Chiang, Y.-M., Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks. Nano Lett., 2014, 14, 2210-2218, DOI: 10.1021/nl500740t. 61. Duduta, M.; Ho, B.; Wood, V.C.; Limthongkul, P.; Brunini, V.E.; Carter, W.C.; Chiang, Y.-M., Semi-Solid Lithium Rechargeable Flow Battery. Adv. Energy Mater., 2011, 1, 511-516, DOI: 10.1002/aenm.201100152. 62. Sevov, C.S.; Brooner, R.E.M.; Chénard, E.; Assary, R.S.; Moore, J.S.; Rodríguez-López, J.; Sanford, M.S., Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. J. Am. Chem. Soc., 2015, 137, 14465-14472, DOI: 10.1021/jacs.5b09572. 63. Ding, Y.; Yu, G., A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery Towards Sustainable Energy Storage. Angew. Chem., 2016, 128, 4850-4854, DOI: 10.1002/ange.201600705. 64. Huskinson, B.; Marshak, M.P.; Suh, C.; Er, S.; Gerhardt, M.R.; Galvin, C.J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R.G.; Aziz, M.J., A Metal-Free Organic-Inorganic Aqueous Flow Battery. Nature, 2014, 505, 195-198, DOI: 10.1038/nature12909. 65. Liu, T.; Wei, X.; Nie, Z.; Sprenkle, V.; Wang, W., A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte. Adv. Energy Mater., 2016, 6, 1501449, DOI: 10.1002/aenm.201501449. 66. von Wald Cresce, A.; Borodin, O.; Xu, K., Correlating Li+ Solvation Sheath Structure with Interphasial Chemistry on Graphite. J. Phys. Chem. C, 2012, 116, 26111-26117, DOI: 10.1021/jp303610t. 67. Zheng, J.; Lochala, J.A.; Kwok, A.; Deng, Z.D.; Xiao, J., Research Progress Towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Adv. Sci., 2017, 1700032, DOI: 10.1002/advs.201700032. 68. Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C.H.; Tateyama, Y.; Yamada, A., Superconcentrated Electrolytes for a High-Voltage Lithium-Ion Battery. Nature Commun., 2016, 7, 12032, DOI: 10.1038/ncomms12032. 69. McOwen, D.W.; Seo, D.M.; Borodin, O.; Vatamanu, J.; Boyle, P.D.; Henderson, W.A., Concentrated Electrolytes: Decrypting Electrolyte Properties and Reassessing Al Corrosion Mechanisms. Energy Environ. Sci., 2014, 7, 416-426, DOI: 10.1039/C3EE42351D. 70. Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K., Suppression of Aluminum Corrosion by Using High Concentration LiTFSI Electrolyte. J. Power Sources, 2013, 231, 234-238, DOI: 10.1016/j.jpowsour.2012.12.028. 71. Qian, J.; Henderson, W.A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High Rate and Stable Cycling of Lithium Metal Anode. Nature Commun., 2015, 6, 6362, DOI: 10.1038/ncomms7362. 72. Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L., A New Class of Solvent-in-Salt Electrolyte for High-Energy Rechargeable Metallic Lithium Batteries. Nature Commun., 2013, 4, 1481, DOI: 10.1038/ncomms2513. 73. Liu, B.; Xu, W.; Yan, P.; Sun, X.; Bowden, M.E.; Read, J.; Qian, J.; Mei, D.; Wang, C.-M.; Zhang, J.-G., Enhanced Cycling Stability of Rechargeable Li–O2 Batteries Using High-Concentration Electrolytes. Adv. Funct. Mater., 2016, 26, 605-613, DOI: 10.1002/adfm.201503697. 74. Ding, F.; Xu, W.; Graff, G.L.; Zhang, J.; Sushko, M.L.; Chen, X.; Shao, Y.; Engelhard, M.H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P.V.; Liu, J.; Zhang, J.-G., Dendrite-Free Lithium Deposition Via Self-Healing Electrostatic Shield Mechanism. J. Am. Chem. Soc., 2013, 135, 4450-4456, DOI: 10.1021/ ja312241y 92 PANEL 1 REPORT

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-098

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP