Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 111

12. Young, B.T.; Heskett, D.R.; Nguyen, C.C.; Nie, M.; Woicik, J.C.; Lucht, B.L., Hard X-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase (SEI) in lithium-ion batteries, ACS Applied Mater. Interfaces, 2015, 7, 20004-20011, DOI:10.1021/ acsami.5b04845. 13. Veith, G.M.; Doucet, M.; Baldwin, J.; Sacci, R.L.; Unocic, R.R.; Tenhaeff, W.E.; Browning, J.F., Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode, J. Phys. Chem. C, 2015, 119, 20339–20349. 14. Veith, G.M.; Baggetto, L.; Sacci, R.L.; Unocic, R.R.; Tenhaeff, W.E.; Browning, J.F., Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes, Chem. Commun., 2014, 50, 3081-3084. 15. Sacci, R.L; Lehmann, M.L.; Diallo, S.O.; Cheng, Y.Q.; Daemen, L.L.; Browning, J.F.; Doucet, M.; Dudney, N.J.; Veith, G.M., Lithium transport in amorphous LixSi anode materials investigated by quasi-elastic neutron scattering, J. Phys. Chem. C, in press (2017). 16. Veith, G.M.; Doucet, M.; Sacci, R.L.; Vacaliuo, B.; Baldwin, J.K.; Browning, J.F., Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive, Nature Sci. Rep., 2017, 7, 6326. 17. Balke, N.; Jesse, S.; Morozovska, A.N.; Eliseev, E.; Chung, D.W.; Kim, Y.; Adamczyk, L.; Garcia, R.E.; Dudney, N.; Kalinin, S.V., Nanoscale mapping of ion diffusion in a lithium-ion battery cathode, Nature Nanotechnol., 2010, 5, 749-754. 18. Balke, N.; Kalnaus, S.; Dudney, N.J.; Daniel, C.; Jesse, S.; Kalinin, S.V., Local detection of activation energy for ionic transport in lithium cobalt oxide, Nano Lett., 2012, 12, 3399-3403. 19. Black, J.M.; Walters, D.; Labuda, A.; Feng, G.; Hillesheim, P.C.; Dai, S.; Cummings, P.T.; Kalinin, S.V.; Proksch, R.; Balke, N., Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite, Nano Lett., 2013, 13, 5954-5960. 20. Ventosa, E.; Wilde, P.; Zinn, A.H.; Trautmann M.; Ludwig, A.; Schuhmann, W., Understanding surface reactivity of Si electrodes in Li-ion batteries by in operando scanning electrochemical microscopy, Chem. Commun., 2016, 52, 6825. 21. Kumar, A.; Arruda, T.M.; Tselev, A.; Ivanov, I.N.; Lawton, J.S.; Zawodzinski, T.A.; Butyaev, O.; Zayats, S.; Jesse, S.; Kalinin, S.V., Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes, Scientific Reports, 2013, 3, 1621. 22. Chen, D.; Xiong, X.; Zhao, B.; Mahmoud, M.A.; El-Sayed, M.A.; Liu, M., Probing structural evolution and charge storage mechanism of NiO2Hx electrode materials using in operando resonance Raman spectroscopy, Advanced Science, 2016, 3, 1500433. 23. Hu, R.; Cheng, D.; Waller, G.; Ouyang, Y.; Chen, Y.; Zhao, B.; Rainwater, B.; Yang, C.; Zhu, M.; Liu, M., Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: The effect of nanostructure on high initial reversible capacity, Energ. Environ. Sci., 2016, 9, 595-603. 24. Waldmann, T.; Hogg, B.I.; Kasper, M.; Grolleau, S.; Couceiro, C.G.; Trad, K.; Matadi, B.P.; Wohlfahrt-Mehrens, M., Interplay of operational parameters on lithium deposition in lithium-ion cells: Systematic measurements with reconstructed 3-electrode pouch full cells, J. Electrochem. Soc., 2016, 163, A2149-A2164. 25. Gao, H.; Lian, K., A H5BW12O40-polyvinyl alcohol polymer electrolyte and its application in solid supercapacitors, J. Mater. Chem. A, 2016, 4, 9585- 9592. 26. K. Leung, Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries, J. Phys. Chem. C, 2013, 117, 1539-1547. 27. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q., A review of solid electrolyte interphases on lithium metal anode, Adv. Sci., 2016, 3, 1500213. 28. Chapman, S.; Cowling, T.G., The Mathematical Theory of Non-uniform Gases, Cambridge University Press (1952) 29. Evans, R., The nature of the liquid-vapor interface and other topics in statistical mechanics of non-uniform, classical fluids, Adv. Phys., 1979, 28, 143; Biben, T.; Hansen, J.P.; Rosenfeld, Y., Generic density functional for electric double layers in a molecular solvent, Phys. Rev. E, 1998, 57, R3727; Calef, D.F.; Wolynes, P.G., Classical solvent dynamics and electron transfer. 1. Continuum theory, J. Phys. Chem., 1983, 87, 3387; Bazant, M.Z.; Storey, B.D.; Kornyshev, A.A., Double layer in ionic liquids: Overscreening versus crowding, Phys. Rev. Lett., 2011, 106, 046102; Abrashkin, A.; Andelman, D.; Orland, H., Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces, Phys. Rev. Lett., 2007, 99, 077801. 30. Balescu, R., Irreversible processes in ionized gases, Phys. Fluids, 1950, 3, 62. 31. Borodin, O., Molecular modeling of electrolytes, Electrolytes for Lithium and Lithium-Ion Batteries, T.R. Jow, et al., Eds., Springer, New York, pp. 371-401 (2014). 32. Vatamanu, J.; Borodin, O.; Smith, G.D., Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential, J. Phys. Chem. C, 2012, 116, 1114-1121. 33. Borodin, O.; Bedrov, D., Interfacial structure and dynamics of the lithium alkyl dicarbonate SEI components in contact with the lithium battery electrolyte, J. Phys. Chem. C, 2014, 118, 18362-18371. 34. Borodin, O.; Smith, G.D., Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: Ethylene carbonate electrolytes doped with LiPF6, J. Phys. Chem., 2009, 113, 1763-1776. 35. Borodin, O.; Olguin, M.; Spear, C.E.; Leiter, K.W.; Knap, J., Towards high throughput screening of electrochemical stability of battery electrolytes, Nanotechnology, 2016, 26, 354003 (2015). 36. Hirayama, M.; Ido, H.; Kim, K.; Cho, W.; Tamura, K.; Mizuki, J.; Kanno, R., Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction, J. Am. Chem. Soc., 2010, 132, 15268-15276. 37. Ozhabes, Y.; Gunceler, D.; Arias, T.A., Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression, Preprint at http://arxiv.org/abs/1504.05799 (2015). 38. Lu, Y.; Tu, Z.; Archer, L.A., Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 2014, 13, 961-969. 39. Choudhury, S.; Wei, S.; Ozhabes, Y.; Gunceler, D.; Nath, P.; Shin, J-H.; Agrawal, A.; Arias, T.; Archer, L.A., Designing solid-liquid interphases for sodium batteries, Nature Commun., In Revision (2017). 40. Choudhury, S.; Archer, L. A., Lithium fluoride additives for stable cycling of lithium batteries at high current densities, Adv. Electron. Mater., 2016, 2, 1500246. 41. Favaro, M.; Jeong, B.; Ross, P.N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E.J., Unravelling the electrochemical double layer by direct probing of the solid/liquid interface, Nature Commun., 2016, 7, 12695. 42. See, K.A.; Chapman, K.W.; Zhu, L.; Wiaderek, K.M.; Borkiewicz, O.J.; Barile, C.J.; Chupas, P.J.; Gewirth, A.A., The interplay of Al and Mg speciation in advanced Mg battery electrolyte solutions, J. Am. Chem. Soc., 2016, 138, 328 ; See, K.A.; Wu, H.-L.; Lau, K.C.; Shin, M.; Cheng, L.; Balasubramanian, M.; Gallagher, K.G.; Curtiss, L.A.; Gewirth, A.A., Effect of hydrofluoroether cosolvent Addition on Li solvation in acetonitrile- based solvate electrolytes and its influence on S reduction in a Li–S battery, ACS Appl. Mater. Interfaces, 2016, 8, 34360; Rajput, N.; Wang, H.; Key, B.; Ferrandon, M.; Srinivasan, V.; Persson, K.A.; Burrell, A.K.; Vaughey, J.T., Concentration dependent electrochemical properties and structural analysis of a simple magnesium electrolyte: Magnesium bis(trifluoromethane sulfonyl)imide in diglyme, RSC Adv., 2016, 6, 113663. NEXT GENERATION ELECTRICAL ENERGY STORAGE PANEL 2 REPORT 105

PDF Image | Next Generation Electrical Energy Storage

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)