logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 112

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP 43. Chazalviel, J-N., Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A, 1990, 42, 7355-7367. 44. Fleury, V.; Chazalviel, J.-N.; Rosso, M., Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits, Phys. Rev. E, 1993, 48, 1279-1295. 45. Vatamanu, J.; Borodin, O.; Smith, G.D., Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential, J. Phys. Chem. C, 2012, 116, 1114-1121. 46. Baskin, A.; Prendergast, D., Exploration of the detailed conditions for reductive stability of Mg(TFSI)2 in diglyme: Implications for multivalent electrolytes, Phys. Chem. C, 2016, 120, 3583; Yu, Y.; Baskin, A.; Valero-Vidal, C.; Hahn, N.T.; Liu, Q.; Zavadil, K.R.; Eichhorn, B.W.; Prendergast, D.; Crumlin, E.J., Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack, Chem. Mater., 2017, DOI: 10.1021/acs.chemmater.7b03404. 47. Monroe, C.; Newman, J., The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 2005, 152, A396-A404. 48. Tikekar, M.D.; Archer, L.A.; Koch, D.L., Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions, Science Advances, 2016, 2, E1600320 (2016). 49. McOwen, D.W.; Seo, D.M.; Borodin, O.; Vatamanu, J.; Boyle, P.D.; Henderson, W.A., Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms, Ener. Envior. Sci., 2014, 7 (1), 416-426. 50. Pinto, L.M.C.; Spohr, E.; Quaino, P.; Santos, E.; Schmickler, W., Why silver deposition is so fast: Solving the enigma of metal deposition, Angew. Chem. Int. Ed., 2013, 52, 7883; Pinto, L.M.C.; Quaino, P.; Santos, E.; Schmickler, W., On the electrochemical deposition and dissolution of divalent metal ions, Chem. Phys. Chem., 2014, 15, 132. 51. Bani-Hashemian, M.H.; Brueck, S.; Luisier, M.; Vandevondele, J., A generalized Poisson solver for first-principles device simulations, J. Chem. Phys., 2015, 144, 044113. 52. Andreussi, O.; Dabo, I.; Marzari, N., Revised self-consistent continuum solvation in electronic-structure calculations, J. Chem. Phys., 2012, 136, 064102-1-20. 53. Otani, M.; Sugino, O., First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach, Phys. Rev. B, 2006, 73, 115407-1-11. 54. Letchworth-Weaver, K.; Arias, T.A., Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge, Phys. Rev. B, 2012, 86, 075140-1-16. 55. Bonnet, N.; Morishita, T.; Sugino, O.; Otani, M., First-principles molecular dynamics at a constant electrode potential, Phys. Rev. Lett., 2012, 109, 266101-1-4. 56. Sundararaman, R.; Goddard III, W.A.; Arias, T.A., Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry, J. Chem. Phys., 2017, 146, 114104-1-14. 57. Tavernelli, I.; Vuilleumier, R.; Sprik, M., Ab initio molecular dynamics for molecules with variable numbers of electrons, Phys. Rev. Lett., 2002, 88, 231002. 58. Verma, P.; Maire, P., Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta, 2010, 55, 6332. 59. Peled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc., 1979, 126, 2047. 60. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources, 2000, 89, 206. 61. Edström, K.; Herstedt, M.; Abraham, D.P., A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, J. Power Sources, 2006, 153, 380. 62. Aurbach, D.; Markovsky, B.; Shechter, A.; Ein-Eli, Y.; Cohen, H., A Comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures, J. Electrochem. Soc., 1996, 143, 3809. 63. Xu, K.; von Cresce, A., Interfacing electrolytes with electrodes in Li ion batteries, J. Mater. Chem., 2011, 21, 9849. 64. Nie, M.; Abraham, D.P.; Chen, Y.; Bose, A.; Lucht, B.L., Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy, J. Phys. Chem. C, 2013, 117, 13403-13412, DOI: 10.1021/jp404155y. 65. Philippe, B.; Dedryvère, R.; Allouche, J.; Lindgren, F.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K., Nanosilicon electrodes for lithium-ion batteries: Interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy, Chem. Mater., 2012, 24, 1107-1115, DOI:10.1021/ cm2034195. 66. Cheng, X.B.; Zhang, R.; Zhao, C.Z.; Wei, Zhang, J.G.; Zhang, Q., A review of solid electrolyte interphases on lithium metal anode, Advanced Science, 2016, 3, 1500213. 67. Lee, J.T.; Nitta, N.; Benson, J.; Magasinski, A.; Fuller, T.F.; Yushin, G., Comparative study of the solid electrolyte interphase on graphite in full Li-ion battery cells using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and electron microscopy, Carbon, 2013, 52, 388-397. 68. Tasaki, K.; Goldberg, A.; Lian, J.J.; Walker, M.; Timmons, A.; Harris, S.J., Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents, J. Electrochem. Soc., 2009, 156, 12, A1019-A1027. 69. Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T., Nanostructured electrode materials for electrochemical energy storage and conversion, Ener. Environ. Sci., 2008, 1, 621. 70. Kim, Y. J.; Cho, J.; Kim, T.-J.; Park, B., Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings, J. Electrochem. Soc., 2003, 150, A1723. 71. Lu, Y.; Das, S.K.; Moganty, S.S.; Archer, L.A., Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium metal batteries, Advanced Materials, 2012, 24, 4430-4435. 72. Wei, S., Ma, L.; Hendrickson, K.E.; Tu, Z.; Archer, L.A., A stable room-temperature sodium-sulfur battery, Nature Commun., 2016, 7, 11722; Wei, S.; Choudhury, S.; Xu, J.; Nath, P.; Tu, Z.; Archer, L.A., Highly stable sodium batteries enabled by functional ionic polymer membranes, Advanced Materials, 2017, DOI: 10.1002/adma.201605512. 73. Pereira, N.; Al-Sharab, J.F.; Cosandey, F.; Badway, F.; Amatucci, G.G., Thermodynamically induced surface modification for the stabilization of high capacity LiCoO2, J. Electrochem. Soc., 2008, 155, A831. 74. Alva, G.; Kim, C.; Yi, T.; Cook. J.B.; Xu, L.; Nolis, G.M.; Cabana, J., Surface chemistry consequences of Mg-based coatings on LiNi0.5Mn1.5O4 electrode materials upon operation at high voltage, J. Phys. Chem. C, 2014, 118, 10596-10605. 106 PANEL 2 REPORT

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-112

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP