logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 113

75. Kim, C.; Phillips, P.J.; Xu, L.; Dong, A.; Buonsanti, R.; Klie, R.F.; Cabana, J., Stablization of battery electrode/electrolyte interfaces employing nanocrystals with passivating epitaxial shells, Chem. Mater., 2015, 27, 394-399. 76. Hou, P.; Zhang, H.; Zi, Z.; Zhang, L.; Xu, X., Core-shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries, J. Mater. Chem. A, 2017, 5, 4254-4279. 77. Leung, K., Predicting the voltage dependence of interfacial electrochemical processes at lithium-intercalated graphite edge planes, Phys. Chem. Chem. Phys., 2015, 17, 1637. 78. S.-Y. Kim; Qi, Y., Property evolution of Al2O3-coated and uncoated Si-electrodes: A first-principles investigation, J. Electrochem. Soc., 2014, 161, F3137-F3143. 79. Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y., Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery, Chem. Mater., 2014, 26, 4248-2455. 80. Lepley, N.D.; Holzwarth, N.A.W., Modeling interfaces between solids: Application to Li battery materials, Phys. Rev. B, 2015, 92, 214201. 81. Leung, K.; Soto, F.; Hankins, K.; Balbuena, P.B.; Harrison, K.L., Stability of solid electrolyte interphase components on metal and reactive anode material surfaces, J. Phys. Chem. C, 2016, 120, 6302-6313. 82. Chan, M.K.Y.; Wolverton, C.; Greeley, J.P., First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon, J. Am. Chem. Soc., 2012, 134, 14362-14374. 83. Qian, D.; Hinuma, Y.; Chen, H.; Du, L.-S.; Carroll, K.J.; Ceder, G.; Grey, C.P.; Meng, Y.S., Electronic spin transition in nanosize stoichiometric lithium cobalt oxide, J. Am. Chem. Soc., 2012, 134, 6096-6099 (2012). 84. Jana, A.; Ely, D.R.; Garcia, R.E., Dendrite-separator interactions in lithium-based batteries, J. Power Sources, 2015, 275, 912-912. 85. Eshkenazi, V.; Peled, E.; Burstein, L.; Golodnitsky, D., XPS analysis of the SEI formed on carbonaceous materials, Solid State Ionics, 2004, 170, 83- 91. 86. Tu, Z.; Nath, P.; Lu, Y.; Tikekar, M. D.; Archer, L. A., Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries, Acct. Chem. Res., 2015, 48, 2947-2956. 87. Cao, Y.; Meng, X.; Elam, J., Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium metal anodes, ChemElectroChem, 2016, 3, 858. 88. Nicotera, I.; McLachlan, G.D.; Bennett, G.D.; Plitz, I.; Badway, F.; Amatucci. G.G.; Greenbaum, S.G., Solid-state NMR characterization of electrolyte breakdown products in nonaqueous asymmetric hybrid supercapacitors, Electrochem. Solid State Lett., 2007, 10, A5-A8. 89. Dupre, N.; Cuisinier, M.; Guyomard, D., Electrode/electrolyte interface studies in lithium batteries using NMR, Electrochem. Soc. Interface, 2011, 20, 61-67. 90. Gmitter, A.J.; Halajko, A.; Sideris, P.; Greenbaum, S.G.; Amatucci, G.G., Subsurface diffusion of oxide electrolyte decomposition products in metal fluoride nanocomposite electrodes, Electrochimica Acta, 2013, 88, 735-744. 91. Cheng, X.B., Zhang, R.; Zhao, C.Z.; Wei, F.; Zhang, J.-G., Zhang, Q., A review of solid electrolyte interphases on lithium, Adv. Sci., 2016, 3, 1500213, 10.1002/advs.201500213. 92. Kazyak, E.; Wood, K.N.; Dasgupta, N.P., Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments, Chem. Mater., 2015, 27 (18), 6457, 10.1021/acs.chemmater.5b02789. 93. Kozen, A.C.; Lin, C.-F.; Pearse, A.J.; Schroeder, M.A.; Han, X.; Hu, L.; Lee, S.B.; Rubloff, G.W.; Noked, M., Next-generation lithium metal anode engineering via atomic layer deposition, ACS Nano, 2015, 9, 5884, 10.1021/acsnano.5b02166. 94. Zhao, J.; Lu, Z.; Wang, H.; Liu, W.; Lee, H.W.; Yan, K.; Zhuo, D.; Lin, D.; Liu, N.; Cui, Y., Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries, J. Am. Chem. Soc., 2015, 137 (26), 8372–8375, DOI:10.1021/jacs.5b04526. 95. Yang, Y.; Wang, Z.; Zhou, R.; Guo, H.; Li, X., Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries, Mat. Lett., 2016, 184, 65-68. 96. Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N.J., Lithium-ion batteries: Solid electrolyte: The key for high-voltage lithium batteries, Adv. Energy Mater., 2015, 5, DOI:10.1002/aenm.201570018. 97. Rohrer, J.; Kaghazchi, P., Structure sensitivity in the decomposition of ethylene carbonate on Si anodes, ChemPhysChem, 2014, 15, 3950-3954. 98. Vogl, U.S.; Lux, S.F.; Das, P.; Weber, A.; Placke, T.; Kostecki, R.; Winter, M., The mechanism of SEI formation on single crystal Si (100), Si(110) and Si(111) electrodes, J. Electrochem. Soc., 2016, 162, A2281-A2288. 99. Sharifi-Asl, S.; Soto, F.A.; Nie, A.; Yuan, Y.; Asayesh-Ardakani, H.; Foroozan, T.; Yurkiv, V.; Song, B.; Mashayek, F.; Klie, R.F.; Amine, K.; Lu, J.; Balbuena, P.B.; Shahbazian-Yassar, R., Facet-dependent thermal instability in LiCoO2, Nano Lett., 2017, DOI: 10.1021/acs.nanolett.6b04502. 100. Kim, J.S.; Kim, K.; Cho, W.; Shin, W.H.; Kanno, R.; Choi, J.W., A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries, Nano Lett., 2012, 12, 6358-6365. 101. Frischmann,P.D.;Hwa,Y.;Cairns,E.J.;Helms,B.A.,Redox-activesupramolecularpolymerbindersforlithium–sulfurbatteriesthatadapttheir transport properties in operando, Chem. Mater., 2016, 28, 7414–7421. 102. Ma, L.; Wei, S.; Zhuang, H.L.; Hendrickson, K.E.; Hennig, R.G.; Archer, L.A., Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur, J. Mater. Chem. A, 2015, 3, 19857-19866. NEXT GENERATION ELECTRICAL ENERGY STORAGE PANEL 2 REPORT 107

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-113

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP