Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 131

☐ The design and development of new charge-storing materials and electrode architectures that are capable of operating under many different charge/discharge regimes, including complex duty-cycle demands, such as repetitive-pulse discharge/charge, deep discharge levels, and many-cycle operation. This will ultimately reduce the complexity of energy-storage systems, resulting in lower cost and less environmental impact. 3.4.4 REFERENCES 1. Whittingham, M.S., Ultimate limits to intercalation reactions for lithium batteries, Chem. Rev., 2014, 114 (23), 11414. 2. Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 2015, 350 (6263), 938. 3. Yamada, Y.; Yamada, A., Review-superconcentrated electrolytes for lithium batteries, J. Electrochem. Soc., 2015, 162 (14), A2406. 4. Lee, J.; Lee, Y.; Lee, J.; Lee, S.M.; Choi, J.H.; Kim, H.; Kwon, M.S.; Kang, K.; Lee, K.T.; Choi, N.S., Ultraconcentrated sodium bis(fluorosulfonyl)imide- based electrolytes for high-performance sodium metal batteries, ACS Appl. Mater. Interfaces, 2017, 9 (4), 3723. 5. Cao, R.G.; Mishra, K.; Li, X.L.; Qian, J.F.; Engelhard, M.H.; Bowden, M.E.; Han, K.S.; Mueller, K.T.; Henderson, W.A.; Zhang, J.G., Enabling room temperature sodium metal batteries, Nano Energy, 2016, 30, 825. 6. He, M.F.; Lau, K.C.; Ren, X.D.; Xiao, N.; McCulloch, W.D.; Curtiss, L.A.; Wu, Y.Y., Concentrated electrolyte for the sodium-oxygen battery: Solvation structure and improved cycle life, Angew. Chem.-Int. Edit., 2016, 55 (49), 15310. 7. Le Bideau, J.; Viau, L.; Vioux, A., Ionogels, ionic liquid based hybrid materials, Chem. Soc. Rev., 2011, 40 (2), 907. 8. Rey, N.G.; Dlott, D.D., Studies of electrochemical interfaces by broadband sum frequency generation, J. Electroanal. Chem., DOI:10.1016/j. jelechem.2016.12.023. 9. Jiang, B.; Ponnuchamy, V.; Shen, Y.; Yang, X.; Yuan, K.; Vetere, V.; Mossa, S.; Skarmoutsos, I.; Zhang, Y.; Zheng, J., The anion effect on Li+ ion coordination structure in ethylene carbonate solutions, J. Phys. Chem. Lett., 2016, 7 (18), 3554. 10. Fulfer, K.D.; Kuroda, D.G., Solvation structure and dynamics of the lithium ion in organic carbonate-based electrolytes: A time-dependent infrared spectroscopy study, J. Phys. Chem. C, 2016, 120 (42), 24011. 11. Velasco-Velez, J.-J.; Wu, C.H.; Pascal, T.A.; Wan, L.F.; Guo, J.; Prendergast, D.; Salmeron, M., The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy, Science, 2014, 346 (6211), 831. 12. Favaro, M.; Jeong, B.; Ross, P.N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E.J., Unravelling the electrochemical double layer by direct probing of the solid/liquid interface, Nat. Commun., 2016, 7, 12695. 13. Park, M.; Zhang, X.C.; Chung, M.D.; Less, G.B.; Sastry, A.M., A review of conduction phenomena in Li-ion batteries, J. Power Sources, 2010, 195 (24), 7904. 14. Kalinin, S.; Balke, N.; Jesse, S.; Tselev, A.; Kumar, A.; Arruda, T.M.; Guo, S.L.; Proksch, R., Li-ion dynamics and reactivity on the nanoscale, Mater. Today, 2011, 14 (11), 548. 15. Green, P.F. Kinetics, Transport, and Structure in Hard and Soft Materials, CRC Press (2005). 16. Kikkawa, S.; Miyazaki, S.; Koizumi, M., Deintercalated NaCoO2 and LiCoO2, J. Solid State Chem., 1986, 62 (1), 35. 17. Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B., LixCoO2 (0 < x -1): A new cathode material for batteries of high energy density, Mater. Res. Bull., 1980, 15 (6), 783. 18. Amatucci, G.G.; Tarascon, J.M.; Klein, L.C., CoO2, the end member of the LixCoO2 solid solution, J. Electrochem. Soc., 1996, 143 (3), 1114. 19. Bruce, P.G., Solid-state chemistry of lithium power sources, Chem. Commun., 1997, 19, 1817. 20. Masquelier, C.; Croguennec, L., Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries, Chem. Rev., 2013, 113 (8), 6552. 21. Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.L.; Tolbert, S.H.; Abruna, H.D.; Simon, P.; Dunn, B., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat. Mater., 2013, 12 (6), 518. 22. Brousse, T.; Belanger, D.; Long, J.W., To be or not to be pseudocapacitive? J. Electrochem. Soc., 2015, 162 (5), A5185. 23. Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H.S.; Honma, I., Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode, J. Amer. Chem. Soc., 2007, 129 (23), 7444. 24. Sassin, M.B.; Greenbaum, S.G.; Stallworth, P.E.; Mansour, A.N.; Hahn, B.P.; Pettigrew, K.A.; Rolison, D.R.; Long, J.W., Achieving electrochemical capacitor functionality from nanoscale LiMn2O4 coatings on 3-D carbon nanoarchitectures, J. Mater. Chem. A, 2013, 1 (7), 2431. 25. Wood, K.N.; Kazyak, E.; Chadwick, A.F.; Chen, K.H.; Zhang, J.G.; Thornton, K.; Dasgupta, N.P., Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy, ACS Central Sci., 2016, 2 (11), 790. 26. Sun, Y.M.; Liu, N.A.; Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nature Energy, 2016, 1, 12. 27. Dalavi, S.; Guduru, P.; Lucht, B.L., Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes, J. Electrochem. Soc., 2012, 159 (5), A642. 28. Piper, D.M.; Evans, T.; Leung, K.; Watkins, T.; Olson, J.; Kim, S.C.; Han, S.S.; Bhat, V.; Oh, K.H.; Buttry, D.A.; Lee, S.-H., Stable silicon-ionic liquid interface for next-generation lithium-ion batteries, Nat. Commun., 2015, 6, 6230. 29. Nakai, H.; Kubota, T.; Kita, A.; Kawashima, A., Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes, J. Electrochem. Soc., 2011, 158 (7), A798. 30. Yi, R.; Dai, F.; Gordin, M.L.; Sohn, H.; Wang, D.H., Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes, Adv. Energy Mater., 2013, 3 (11), 1507. 31. Yao, Y.; Liu, N.; McDowell, M.T.; Pasta, M.; Cui, Y., Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy Environ. Sci., 2012, 5 (7), 7927. 32. Li, J.C.; Dudney, N.J.; Nanda, J.; Liang, C.D., Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes, ACS Appl. Mater. Interfaces, 2014, 6 (13), 10083. 33. Zhao, J.; Lu, Z.D.; Wang, H.T.; Liu, W.; Lee, H.W.; Yan, K.; Zhuo, D.; Lin, D.C.; Liu, N.; Cui, Y., Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries, J. Amer. Chem. Soc., 2015, 137 (26), 8372. NEXT GENERATION ELECTRICAL ENERGY STORAGE PANEL 4 REPORT 125

PDF Image | Next Generation Electrical Energy Storage

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)