Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 132

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP 34. Qian, J.F.; Henderson, W.A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.G., High rate and stable cycling of lithium metal anode, Nat. Commun., 2015, 6, 6362. 35. Camacho-Forero, L.E.; Smith, T.W.; Balbuena, P.B., Effects of high and low salt concentration in electrolytes at lithium-metal anode surfaces, J. Phys. Chem. C, 2017, 121 (1), 182. 36. Budi, A.; Basile, A.; Opletal, G.; Hollenkamp, A.F.; Best, A.S.; Rees, R.J.; Bhatt, A.I.; O’Mullane, A.P.; Russo, S.P., Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide, J. Phys. Chem. C, 2012, 116 (37), 19789. 37. Liu, Z.; Bertolini, S.; Mukherjee, P.P.; Balbuena, P.B., Li2S film formation on lithium anode surface of Li-S batteries, ACS Appl. Mater. Interfaces, 2016, 8 (7), 4700. 38. Leung, K., First-principles modeling of Mn(II) migration above and dissolution from LixMn2O4 (001) surfaces, Chem. Mat., 2017, 29 (6), 2550. 39. Fan, L.; Zhuang, H.L.L.; Gao, L.N.; Lu, Y.Y.; Archer, L.A., Regulating Li deposition at artificial solid electrolyte interphases, J. Mater. Chem. A, 2017, 5 (7), 3483. 40. Park, M.S.; Ma, S.B.; Lee, D.J.; Im, D.; Doo, S.-G.; Yamamoto, O., A highly reversible lithium metal anode, Sci. Rep., 2014, 4, 3815. 41. Wang, Y.; Nakamura, S.; Ue, M.; Balbuena, P.B., Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: Reduction mechanisms of ethylene carbonate, J. Am. Chem. Soc., 2001, 123, 11708. 42. Leung, K.; Budzien, J.L., Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes, Phys. Chem. Chem. Phys., 2010, 12 (25), 6583. 43. Martinez de la Hoz, J.M.; Leung, K.; Balbuena, P.B., Reduction mechanisms of ethylene carbonate on Si anodes: Effects of degree of lithiation and nature of exposed surface, ACS Appl. Mater. Interfaces, 2013, 5, 13457. 44. Leung, K.; Rempe, S.B.; Foster, M.E.; Ma, Y.; Martinez de la Hoz, J.M.; Sai, N.; Balbuena, P.B., Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries, J. Electrochem. Soc., 2014, 3, A213. 45. Baskin, A.; Prendergast, D., Exploration of the detailed conditions for reductive stability of Mg(TFSI)2 in diglyme: Implications for multivalent electrolytes, J. Phys. Chem. C, 2016, 120 (7), 3583. 46. Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A., Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries, J. Amer. Chem. Soc., 2014, 136 (13), 5039. 47. Leung, K.; Qi, Y.; Zavadil, K.R.; Jung, Y.S.; Dillon, A.C.; Cavanagh, A.S.; Lee, S.H.; George, S.M., Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: First-principles modeling and experimental studies, J. Amer. Chem. Soc., 2011, 133 (37), 14741. 48. Soto, F.A.; Ma, Y.; Martinez de la Hoz, J.M.; Seminario, J.M.; Balbuena, P.B., Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries, Chem. Mater., 2015, 27 (23), 7990. 49. Leung, K.; Soto, F.A.; Hankins, K.; Balbuena, P.B.; Harrison, K.L., Stability of solid electrolyte interphase components on Li metal and reactive anode material surfaces, J. Phys. Chem. C, 2016, 120, 6302. 50. Vatamanu, J.; Borodin, O.; Smith, G.D., Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential, J. Phys. Chem. C, 2012, 116 (1), 1114. 51. Kim, S.P.; van Duin, A.C.T.; Shenoy, V.B., Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study, J. Power Sources, 2011, 196 (20), 8590. 52. Kornyshev, A.A., Double-layer in ionic liquids: Paradigm change? J. Phys. Chem. B, 2007, 111 (20), 5545. 53. Kilic, M.S.; Bazant, M.Z.; Ajdari, A., Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging, Phys. Rev. E, 2007, 75 (2), 021502. 54. Jiang, D.-E.; Wu, J., Microscopic insights into the electrochemical behavior of nonaqueous electrolytes in electric double-layer capacitors, J. Phys. Chem. Lett., 2013, 4 (8), 1260. 55. Lian, C.; Liu, K.; Van Aken, K L.; Gogotsi, Y.; Wesolowski, D.J.; Liu, H.L.; Jiang, D.E.; Wu, J.Z., Enhancing the capacitive performance of electric double-layer capacitors with ionic liquid mixtures, ACS Energy Lett., 2016, 1 (1), 21. 56. Varanasi, S.R.; Farmahini, A.H.; Bhatia, S.K., Complementary effects of pore accessibility and decoordination on the capacitance of nanoporous carbon electrochemical supercapacitors, J. Phys. Chem. C, 2015, 119 (52), 28809. 57. Letchworth-Weaver, K.; Arias, T.A., Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge, Phys. Rev. B, 2012, 86 (7), 075140. 58. Zhan, C.; Jiang, D.E., Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes, J. Phys. Chem. Lett., 2016, 7 (5), 789. 59. Girard, H.L.; Wang, H.N.; d’Entremont, A.; Pilon, L., Physical interpretation of cyclic voltammetry for hybrid pseudocapacitors, J. Phys. Chem. C, 2015, 119 (21), 11349. 60. Cheng, Z.; De-en, J., Understanding the pseudocapacitance of RuO2 from joint density functional theory, J. Phys.: Condensed Matter, 2016, 28 (46), 464004. 61. Merlet, C.; Rotenberg, B.; Madden, P.A.; Taberna, P.-L.; Simon, P.; Gogotsi, Y.; Salanne, M., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nature Materials, 2012, 11, 306–310. 62. Kim, C.; Phillips, P.J.; Xu, L.; Dong, A.; Buonsanti, R.; Klie, R.F.; Cabana, J., Stabilization of battery electrode/electrolyte interfaces employing nanocrystals with passivating epitaxial shells, Chem. Mat., 2015, 27 (1), 394. 63. Sun, Y.K.; Myung, S.T.; Park, B.C.; Prakash, J.; Belharouak, I.; Amine, K., High-energy cathode material for long-life and safe lithium batteries, Nat. Mater., 2009, 8 (4), 320. 64. Fu, K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, C.; Wang, Y.; Chen, Y.; Yan, C.; Yan, C.; Wachsman, E.D.; Hu, L., Flexible, solid-state, ion- conducting membrane with 3D garnet nanofiber networks for lithium batteries, PNAS, 2016, 113 (26), 7094. 65. Shin, D.W.; Bridges, C.A.; Huq, A.; Paranthaman, M.P.; Manthiram, A., Role of cation ordering and surface segregation in high-voltage spinel LiMn1.5Ni0.5–xMxO4 (M = Cr, Fe, and Ga) cathodes for lithium-ion batteries, Chem. Mat., 2012, 24 (19), 3720. 66. Walton, R.I.; Smith, R.I.; O’Hare, D., Following the hydrothermal crystallisation of zeolites using time-resolved in situ powder neutron diffraction, Microporous Mesoporous Mat., 2001, 48 (1-3), 79. 67. Pienack, N.; Bensch, W., In-situ monitoring of the formation of crystalline solids, Angew. Chem.-Inter. Ed., 2011, 50 (9), 2014. 68. Chung, J.H.; Granja, I.; Taylor, M.G.; Mpourmpakis, G.; Asplin, J.R.; Rimer, J.D., Molecular modifiers reveal a mechanism of pathological crystal growth inhibition, Nature, 2016, 536 (7617), 446. 126 PANEL 4 REPORT

PDF Image | Next Generation Electrical Energy Storage

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)