Oxygen Redox Reactions in Batteries Resonant Inelastic X-ray Scattering

PDF Publication Title:

Oxygen Redox Reactions in Batteries Resonant Inelastic X-ray Scattering ( oxygen-redox-reactions-batteries-resonant-inelastic-x-ray-sc )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Condens. Matter 2019, 4, 5 11 of 12 could be extended to the weak low-energy excitation feature-4, and could be employed to study almost all TM oxide based battery electrodes. While the theoretical simulation for fundamentally understanding the oxygen redox features in O-K mRIXS remains very challenging, these experimental observations provide a critical benchmark on how to reliably detect and evaluate oxygen redox reactions in battery electrodes. Additionally, spectroscopic results will trigger extensive studies based on both material characterizations and theoretical calculations, which will eventually lead to technological developments and a fundamental understanding of the true mechanism of oxygen redox reactions in batteries. Author Contributions: J.W., S.S., Q.L. and W.Y. organized and analyzed spectroscopic data; Q.L. and W.E.G. conducted the experiments; all authors discussed the results. J.W. and W.Y. wrote the paper with all authors reviewed and contributed to the manuscript. Funding: This research was funded by DOE Office of Science User Facility, grant number DE-AC02-05CH11231. Acknowledgments: This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. Q.L. acknowledges financial support from China Scholarship Council. Q.L. and S.Y. acknowledge financial support from 111 Project no. B13029. W.Y. acknowledges the support from the Energy Biosciences Institute through the EBI-Shell program. Conflicts of Interest: The authors declare no conflict of interest. References 1. Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [CrossRef] 2. Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [CrossRef] [PubMed] 3. Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613. [CrossRef] [PubMed] 4. Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2, 710–721. [CrossRef] 5. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.B.; Carretero-Gonzalez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901. [CrossRef] 6. Pan, H.; Hu, Y.-S.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360. [CrossRef] 7. Assat, G.; Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386. [CrossRef] 8. Yang, W.; Devereaux, T.P. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 2018, 389, 188–197. [CrossRef] 9. Qiao, R.; Chuang, Y.D.; Yan, S.; Yang, W. Soft x-ray irradiation effects of Li(2)O(2), Li(2)CO(3) and Li(2)O revealed by absorption spectroscopy. PLoS ONE 2012, 7, e49182. [CrossRef] 10. Glans, P.; Gunnelin, K.; Skytt, P.; Guo, J.; Wassdahl, N.; Nordgren, J.; Agren, H.; Gel’mukhanov, F.K.; Warwick, T.; Rotenberg, E. Resonant x-ray emission spectroscopy of molecular oxygen. Phys. Rev. Lett. 1996, 76, 2448–2451. [CrossRef] 11. De Groot, F.M.F.; Grioni, M.; Fuggle, J.C.; Ghijsen, J.; Sawatzky, G.A.; Petersen, H. Oxygen 1s x-ray-absorption edges of transition-metal oxides. Phys. Rev. B 1989, 40, 5715–5723. [CrossRef] 12. Liu, X.; Wang, Y.J.; Barbiellini, B.; Hafiz, H.; Basak, S.; Liu, J.; Richardson, T.; Shu, G.; Chou, F.; Weng, T.C.; et al. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation. Phys. Chem. Chem. Phys. 2015, 17, 26369–26377. [CrossRef] 13. Qiao, R.; Wray, L.A.; Kim, J.-H.; Pieczonka, N.P.W.; Harris, S.J.; Yang, W. Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi0.5Mn1.5O4Electrodes. J. Phys. Chem. C 2015, 119, 27228–27233. [CrossRef] 14. Wu, J.; Sallis, S.; Qiao, R.; Li, Q.; Zhuo, Z.; Dai, K.; Guo, Z.; Yang, W. Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering. J. Vis. Exp. 2018. [CrossRef] [PubMed]

PDF Image | Oxygen Redox Reactions in Batteries Resonant Inelastic X-ray Scattering

PDF Search Title:

Oxygen Redox Reactions in Batteries Resonant Inelastic X-ray Scattering

Original File Name Searched:

condensedmatter-04-00005.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)