logo

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

PDF Publication Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries ( synchrotron-based-x-ray-diffraction-lithium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 024

Condens. Matter 2020, 5, 75 24 of 28 33. Tripathi, A.M.; Su, W.N.; Hwang, B.J. In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 2018, 47, 736–751. [CrossRef] 34. Ouvrard, G.; Zerrouki, M.; Soudan, P.; Lestriez, B.; Masquelier, C.; Morcrette, M.; Hamelet, S.; Belin, S.; Flank, A.M.; Baudelet, F. Heterogeneous behaviour of the lithium battery composite electrode LiFePO4. J. Power Sources 2013, 229, 16–21. [CrossRef] 35. Tan, C.; Daemi, S.R.; Taiwo, O.O.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R. Evolution of electrochemical cell designs for in-situ and operando 3D characterization. Materials 2018, 11, 2157. [CrossRef] [PubMed] 36. Ahmad, M.I.; Van Campen, D.G.; Fields, J.D.; Yu, J.; Pool, V.L.; Parilla, P.A.; Ginley, D.S.; Van Hest, M.F.A.M.; Toney, M.F. Rapid thermal processing chamber for in-situ x-ray diffraction. Rev. Sci. Instrum. 2015, 86. [CrossRef] 37. Jung, R.; Linsenmann, F.; Thomas, R.; Wandt, J.; Solchenbach, S.; Maglia, F.; Stinner, C.; Tromp, M.; Gasteiger, H.A. Nickel, Manganese, and Cobalt Dissolution from Ni-Rich NMC and Their Effects on NMC622-Graphite Cells. J. Electrochem. Soc. 2019, 166, A378–A389. [CrossRef] 38. Yoon, W.S.; Grey, C.P.; Balasubramanian, M.; Yang, X.Q.; McBreen, J. In situ X-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling. Chem. Mater. 2003, 15, 3161–3169. [CrossRef] 39. Liu, H.; Li, Z.; Grenier, A.; Kamm, G.E.; Yin, L.; Mattei, G.S.; Cosby, M.R.; Khalifah, P.G.; Chupas, P.J.; Chapman, K.W. Best practices for operando depth-resolving battery experiments. J. Appl. Crystallogr. 2020, 53, 133–139. [CrossRef] 40. Strobridge, F.C.; Orvananos, B.; Croft, M.; Yu, H.C.; Robert, R.; Liu, H.; Zhong, Z.; Connolley, T.; Drakopoulos, M.; Thornton, K.; et al. Mapping the inhomogeneous electrochemical reaction through porous LiFePO4-electrodes in a standard coin cell battery. Chem. Mater. 2015, 27, 2374–2386. [CrossRef] 41. Ronci, F.; Scrosati, B.; Rossi Albertini, V.; Perfetti, P. In situ energy dispersive x-ray diffraction study of LiNi0.8Co0.2O2 cathode material for lithium batteries. J. Phys. Chem. B 2001, 105, 754–759. [CrossRef] 42. Marschilok, A.C.; Bruck, A.M.; Abraham, A.; Stackhouse, C.A.; Takeuchi, K.J.; Takeuchi, E.S.; Croft, M.; Gallaway, J.W. Energy dispersive X-ray diffraction (EDXRD) for operando materials characterization within batteries. Phys. Chem. Chem. Phys. 2020, 22, 20972–20989. [CrossRef] 43. Xu, Y.; Hu, E.; Zhang, K.; Wang, X.; Borzenets, V.; Sun, Z.; Pianetta, P.; Yu, X.; Liu, Y.; Yang, X.Q.; et al. In situ Visualization of State-of-Charge Heterogeneity within a LiCoO2 Particle that Evolves upon Cycling at Different Rates. ACS Energy Lett. 2017, 2, 1240–1245. [CrossRef] 44. Holleck, G.L.; Driscoll, J.R. Transition metal sulfides as cathodes for secondary lithium batteries-II. titanium sulfides. Electrochim. Acta 1977, 22, 647–655. [CrossRef] 45. Dahn, J.R.; Haering, R.R. Anomalous bragg peak widths in LixTiS2. Solid State Commun. 1981, 40, 245–248. [CrossRef] 46. Ghanty, C.; Markovsky, B.; Erickson, E.M.; Talianker, M.; Haik, O.; Tal-Yossef, Y.; Mor, A.; Aurbach, D.; Lampert, J.; Volkov, A.; et al. Li+-Ion Extraction/Insertion of Ni-Rich Li1+x(NiyCozMnz)wO2 (0.005 < x < 0.03; y:z = 8:1, w ≈ 1) Electrodes: In Situ XRD and Raman Spectroscopy Study. ChemElectroChem 2015, 2, 1479–1486. [CrossRef] 47. Yavuz, M.; Kiziltas-Yavuz, N.; Bhaskar, A.; Scheuermann, M.; Indris, S.; Fauth, F.; Knapp, M.; Ehrenberg, H. Influence of iron on the structural evolution of Lini0.4Fe0.2MN1.4O4 during electrochemical cycling investigated by in situ powder diffraction and spectroscopic methods. Z. Anorg. Allg. Chem. 2014, 640, 3118–3126. [CrossRef] 48. Herklotz, M.; Scheiba, F.; Hinterstein, M.; Nikolowski, K.; Knapp, M.; Dippel, A.C.; Giebeler, L.; Eckert, J.; Ehrenberg, H. Advances in in situ powder diffraction of battery materials: A case study of the new beamline P02.1 at DESY, Hamburg. J. Appl. Crystallogr. 2013, 46, 1117–1127. [CrossRef] 49. Schweidler, S.; De Biasi, L.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Volume Changes of Graphite Anodes Revisited: A Combined Operando X-ray Diffraction and in Situ Pressure Analysis Study. J. Phys. Chem. C 2018, 122, 8829–8835. [CrossRef] 50. De Biasi, L.; Kondrakov, A.O.; Geßwein, H.; Brezesinski, T.; Hartmann, P.; Janek, J. Between Scylla and Charybdis: Balancing among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries. J. Phys. Chem. C 2017, 121, 26163–26171. [CrossRef] 51. Borkiewicz, O.J.; Shyam, B.; Wiaderek, K.M.; Kurtz, C.; Chupas, P.J.; Chapman, K.W. The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements. J. Appl. Crystallogr. 2012, 45, 1261–1269. [CrossRef] 52. Nikolowski, K.; Baehtz, G.; Bramnik, N.N.; Ehrenberg, H. A Swagelok-type in situ cell for battery investigations using synchrotron radiation. J. Appl. Crystallogr. 2005, 38, 851–853. [CrossRef]

PDF Image | Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

synchrotron-based-x-ray-diffraction-lithium-ion-batteries-024

PDF Search Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

Original File Name Searched:

condensedmatter-05-00075.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP