logo

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

PDF Publication Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries ( synchrotron-based-x-ray-diffraction-lithium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 025

Condens. Matter 2020, 5, 75 25 of 28 53. Leriche, J.B.; Hamelet, S.; Shu, J.; Morcrette, M.; Masquelier, C.; Ouvrard, G.; Zerrouki, M.; Soudan, P.; Belin, S.; Elkaïm, E.; et al. An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation. J. Electrochem. Soc. 2010, 157, A606. [CrossRef] 54. Liu, H.; Allan, P.K.; Borkiewicz, O.J.; Kurtz, C.; Grey, C.P.; Chapman, K.W.; Chupas, P.J. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices. J. Appl. Crystallogr. 2016, 49, 1665–1673. [CrossRef] 55. Klein, D.; Xu, Y.; Schlögl, R.; Cap, S. Low Reversible Capacity of Nitridated Titanium Electrical Terminals. Batteries 2019, 5, 17. [CrossRef] 56. Wilson, G.; Zilinskaite, S.; Unka, S.; Boston, R.; Reeves-McLaren, N. Establishing operando diffraction capability through the study of Li-ion (de) intercalation in LiFePO4. Energy Rep. 2020, 6, 174–179. [CrossRef] 57. Yu, F.; Zhang, L.; Li, Y.; An, Y.; Zhu, M.; Dai, B. Mechanism studies of LiFePO4 cathode material: Lithiation/delithiation process, electrochemical modification and synthetic reaction. RSC Adv. 2014, 4, 54576–54602. [CrossRef] 58. Quilty, C.D.; Bock, D.C.; Yan, S.; Takeuchi, K.J.; Takeuchi, E.S.; Marschilok, A.C. Probing Sources of Capacity Fade in LiNi0.6Mn0.2Co0.2O2 (NMC622): An Operando XRD Study of Li/NMC622 Batteries during Extended Cycling. J. Phys. Chem. C 2020, 124, 8119–8128. [CrossRef] 59. Hulbert, S.L.; Williams, G.P. 1—Synchrotron Radiation Sources; Samson, J.A.R., Ederer, D.L., Eds.; Academic Press: Burlington, VT, USA, 2000; pp. 1–25. ISBN 978-0-12-617560-8. 60. Beale, A.M.; Jacques, S.D.M.; Gibson, E.K.; Di Michiel, M. Progress towards five dimensional diffraction imaging of functional materials under process conditions. Coord. Chem. Rev. 2014, 277, 208–223. [CrossRef] 61. Bianchini, M.; Fauth, F.; Brisset, N.; Weill, F.; Suard, E.; Masquelier, C.; Croguennec, L. Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction. Chem. Mater. 2015, 27, 3009–3020. [CrossRef] 62. Bianchini, M.; Brisset, N.; Fauth, F.; Weill, F.; Elkaim, E.; Suard, E.; Masquelier, C.; Croguennec, L. Na3V2(PO4)2F3 revisited: A high-resolution diffraction study. Chem. Mater. 2014, 26, 4238–4247. [CrossRef] 63. Withers, P.J. Depth capabilities of neutron and synchrotron diffraction strain measurement instruments. I. The maximum feasible path length. J. Appl. Crystallogr. 2004, 37, 596–606. [CrossRef] 64. Young, B.T.; Heskett, D.R.; Woicik, J.C.; Lucht, B.L. X-ray-induced changes to passivation layers of lithium-ion battery electrodes. J. Spectrosc. 2018, 2018. [CrossRef] 65. Xu, C.; Märker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P.J.; Day, S.J.; Groh, M.F.; Emge, S.P.; Ducati, C.; Layla Mehdi, B.; et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 2020. [CrossRef] [PubMed] 66. Marker, K.; Reeves, P.J.; Xu, C.; Griffith, K.J.; Grey, C.P. Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes during electrochemical cycling. Chem. Mater. 2019, 2, 2545–2554. [CrossRef] 67. Bartsch, T.; Kim, A.Y.; Strauss, F.; De Biasi, L.; Teo, J.H.; Janek, J.; Hartmann, P.; Brezesinski, T. Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction. Chem. Commun. 2019, 55, 11223–11226. [CrossRef] [PubMed] 68. Oh, G.; Hirayama, M.; Kwon, O.; Suzuki, K.; Kanno, R. Bulk-Type All Solid-State Batteries with 5 v Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte. Chem. Mater. 2016, 28, 2634–2640. [CrossRef] 69. Chattopadhyay, S.; Lipson, A.L.; Karmel, H.J.; Emery, J.D.; Fister, T.T.; Fenter, P.A.; Hersam, M.C.; Bedzyk, M.J. In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode. Chem. Mater. 2012, 24, 3038–3043. [CrossRef] 70. Tippens, J.; Miers, J.C.; Afshar, A.; Lewis, J.A.; Cortes, F.J.Q.; Qiao, H.; Marchese, T.S.; Di Leo, C.V.; Saldana, C.; McDowell, M.T. Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte. ACS Energy Lett. 2019, 4, 1475–1483. [CrossRef] 71. Bianchini, M.; Fauth, F.; Suard, E.; Leriche, J.B.; Masquelier, C.; Croguennec, L. Spinel materials for Li-ion batteries: New insights obtained by operando neutron and synchrotron X-ray diffraction. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2015, 71, 688–701. [CrossRef] 72. Lu, Z.; MacNeil, D.D.; Dahn, J.R. Layered cathode materials Li[Nix Li(1/3−2x/3) Mn(2/3−x/3) ]O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 2001, 4, 3–7. [CrossRef]

PDF Image | Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

synchrotron-based-x-ray-diffraction-lithium-ion-batteries-025

PDF Search Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

Original File Name Searched:

condensedmatter-05-00075.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP