Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

PDF Publication Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries ( synchrotron-based-x-ray-diffraction-lithium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 027

Condens. Matter 2020, 5, 75 27 of 28 93. Ketenoglu, D.; Spiekermann, G.; Harder, M.; Oz, E.; Koz, C.; Yagci, M.C.; Yilmaz, E.; Yin, Z.; Sahle, C.J.; Detlefs, B.; et al. X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell. J. Synchrotron Radiat. 2018, 25, 537–542. [CrossRef] 94. Wang, F.; Yu, H.C.; Chen, M.H.; Wu, L.; Pereira, N.; Thornton, K.; Van Der Ven, A.; Zhu, Y.; Amatucci, G.G.; Graetz, J. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 2012, 3, 1–8. [CrossRef] 95. Zhou, Y.N.; Yue, J.L.; Hu, E.; Li, H.; Gu, L.; Nam, K.W.; Bak, S.M.; Yu, X.; Liu, J.; Bai, J.; et al. High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1–8. [CrossRef] 96. Nelson, J.; Misra, S.; Yang, Y.; Jackson, A.; Liu, Y.; Wang, H.; Dai, H.; Andrews, J.C.; Cui, Y.; Toney, M.F. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 2012, 134, 6337–6343. [CrossRef] 97. Chueh, W.C.; El Gabaly, F.; Sugar, J.D.; Bartelt, N.C.; McDaniel, A.H.; Fenton, K.R.; Zavadil, K.R.; Tyliszczak, T.; Lai, W.; McCarty, K.F. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. Nano Lett. 2013, 13, 866–872. [CrossRef] [PubMed] 98. Li, Y.; El Gabaly, F.; Ferguson, T.R.; Smith, R.B.; Bartelt, N.C.; Sugar, J.D.; Fenton, K.R.; Cogswell, D.A.; Kilcoyne, A.L.D.; Tyliszczak, T.; et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 2014, 13, 1149–1156. [CrossRef] [PubMed] 99. Yang, F.; Liu, Y.; Martha, S.K.; Wu, Z.; Andrews, J.C.; Ice, G.E.; Pianetta, P.; Nanda, J. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling. Nano Lett. 2014, 14, 4334–4341. [CrossRef] [PubMed] 100. Yu,S.H.;Huang,X.;Schwarz,K.;Huang,R.;Arias,T.A.;Brock,J.D.;Abruña,H.D.Directvisualizationof sulfur cathodes: New insights into Li-S batteries via operando X-ray based methods. Energy Environ. Sci. 2018, 11, 202–210. [CrossRef] 101. Xie,Y.;Wang,H.;Xu,G.;Wang,J.;Sheng,H.;Chen,Z.;Ren,Y.;Sun,C.J.;Wen,J.;Wang,J.;etal.InOperando XRD and TXM Study on the Metastable Structure Change of NaNi1/3Fe1/3Mn1/3O2 under Electrochemical Sodium-Ion Intercalation. Adv. Energy Mater. 2016, 6, 3–7. [CrossRef] 102. Thomas, M.M.; Heenan, A.W.; Chun, T.; Julia, E.; Parker, D.M.; Andrew, S.; Leach, J.B.; Robinson, A.L.; Alexander, D.; Rhodri, J.; et al. Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-ion Batteries. Adv. Energy Mater. 2020. [CrossRef] 103. Villevieille,C.;Ebner,M.;Gómez-Cámer,J.L.;Marone,F.;Novák,P.;Wood,V.Influenceofconversionmaterial morphology on electrochemistry studied with operando X-ray tomography and diffraction. Adv. Mater. 2015, 27, 1676–1681. [CrossRef] 104. Finegan,D.P.;Vamvakeros,A.;Tan,C.;Heenan,T.M.M.;Daemi,S.R.;Seitzman,N.;DiMichiel,M.;Jacques,S.; Beale, A.M.; Brett, D.J.L.; et al. Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes. Nat. Commun. 2020, 11, 1–11. [CrossRef] 105. Bleuet, P.; Susini, J.; Hodeau, J.; Eonore, E.L.; Ee, E.D.; Walter, P. Probing the structure of heterogeneous diluted materials by diffraction to mography. Nat. Mater. 2008, 7. [CrossRef] 106. Daemi,S.R.;Tan,C.;Vamvakeros,A.;Heenan,T.M.M.;Finegan,D.P.;DiMichiel,M.;Beale,A.M.;Cookson,J.; Petrucco, E.; Weaving, J.S.; et al. Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography. Phys. Chem. Chem. Phys. 2020. [CrossRef] 107. Finegan,D.P.;Vamvakeros,A.;Cao,L.;Tan,C.;Heenan,T.M.M.;Daemi,S.R.;Jacques,S.D.M.;Beale,A.M.; Di Michiel, M.; Smith, K.; et al. Spatially Resolving Lithiation in Silicon-Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography. Nano Lett. 2019, 19, 3811–3820. [CrossRef] [PubMed] 108. Liu,H.;Kazemiabnavi,S.;Grenier,A.;Vaughan,G.;DiMichiel,M.;Polzin,B.J.;Thornton,K.;Chapman,K.W.; Chupas, P.J. Quantifying Reaction and Rate Heterogeneity in Battery Electrodes in 3D through Operando X-ray Diffraction Computed Tomography. ACS Appl. Mater. Interfaces 2019, 11, 18386–18394. [CrossRef] [PubMed] 109. Vanpeene,V.;King,A.;Maire,E.;Roué,L.InsitucharacterizationofSi-basedanodesbycouplingsynchrotron X-ray tomography and diffraction. Nano Energy 2019, 56, 799–812. [CrossRef] 110. Lemarié, Q.; Maire, E.; Idrissi, H.; Thivel, P.X.; Alloin, F.; Roué, L. Sulfur-Based Electrode Using a Polyelectrolyte Binder Studied via Coupled in Situ Synchrotron X-ray Diffraction and Tomography. ACS Appl. Energy Mater. 2020, 3, 2422–2431. [CrossRef]

PDF Image | Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

PDF Search Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

Original File Name Searched:

condensedmatter-05-00075.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)