Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

PDF Publication Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries ( synchrotron-based-x-ray-diffraction-lithium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 028

Condens. Matter 2020, 5, 75 28 of 28 111. Finegan,D.P.;Quinn,A.;Wragg,D.S.;Colclasure,A.M.;Lu,X.;Tan,C.;Heenan,T.M.M.;Jervis,R.;Brett,D.J.L.; Das, S.; et al. Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes. Energy Environ. Sci. 2020. [CrossRef] 112. Ren,Y.;Zuo,X.SynchrotronX-RayandNeutronDiffraction,TotalScattering,andSmall-AngleScattering Techniques for Rechargeable Battery Research. Small Methods 2018, 2, 1800064. [CrossRef] 113. Permien,S.;Hansen,A.L.;VanDinter,J.;Indris,S.;Neubüser,G.;Kienle,L.;Doyle,S.;Mangold,S.;Bensch,W. Unveiling the Reaction Mechanism during Li Uptake and Release of Nanosized “niFeMnO4”: Operando X-ray Absorption, X-ray Diffraction, and Pair Distribution Function Investigations. ACS Omega 2019, 4, 2398–2409. [CrossRef] 114. Wiaderek,K.M.;Borkiewicz,O.J.;Castillo-Martínez,E.;Robert,R.;Pereira,N.;Amatucci,G.G.;Grey,C.P.; Chupas, P.J.; Chapman, K.W. Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando pdf and NMR spectroscopy. J. Am. Chem. Soc. 2013, 135, 4070–4078. [CrossRef] 115. Benmore, C.J. A Review of High-Energy X-Ray Diffraction from Glasses and Liquids. ISRN Mater. Sci. 2012, 2012, 1–19. [CrossRef] 116. Hong,X.;Ehm,L.;Zhong,Z.;Ghose,S.;Duffy,T.S.;Weidner,D.J.High-energyX-rayfocusingandapplications to pair distribution function investigation of Pt and Au nanoparticles at high pressures. Sci. Rep. 2016, 6, 1–8. [CrossRef] 117. Poulsen,H.F.;Neuefeind,J.;Neumann,H.B.;Schneider,J.R.;Zeidler,M.D.Amorphoussilicastudiedbyhigh energy X-ray diffraction. J. Non. Cryst. Solids 1995, 188, 63–74. [CrossRef] 118. Sánchez-Gil, V.; Noya, E.G.; Temleitner, L.; Pusztai, L. Reverse Monte Carlo modeling: The two distinct routes of calculating the experimental structure factor. J. Mol. Liq. 2015, 207, 211–215. [CrossRef] 119. Eremenko,M.;Krayzman,V.;Gagin,A.;Levin,I.AdvancingreverseMonteCarlostructurerefinementsto the nanoscale. J. Appl. Crystallogr. 2017, 50, 1561–1570. [CrossRef] 120. Soper,A.K.Testsoftheempiricalpotentialstructurerefinementmethodandanewmethodofapplicationto neutron diffraction data on water. Mol. Phys. 2001, 99, 1503–1516. [CrossRef] 121. Soper,A.K.;Page,K.;Llobet,A.Empiricalpotentialstructurerefinementofsemi-crystallinepolymersystems: Polytetrafluoroethylene and polychlorotrifluoroethylene. J. Phys. Condens. Matter 2013, 25. [CrossRef] 122. Pandey,A.;Biswas,P.;Drabold,D.A.Inversionofdiffractiondataforamorphousmaterials.Nat.Publ.Gr. 2016, 1–8. [CrossRef] 123. Saito, Y.; Iihara, J.; Yamaguchi, K.; Haruna, T.; Onishi, M. Structure analysis technology for amorphous materials by synchrotron radiation X-ray measurements and molecular dynamics simulations. SEI Tech. Rev. 2008, 67, 27–32. 124. Chao,W.;Fischer,P.;Tyliszczak,T.;Rekawa,S.;Anderson,E.;Naulleau,P.Realspacesoftx-rayimagingat 10 nm spatial resolution. Opt. Express 2012, 20, 9777. [CrossRef] 125. Hill,J.;Campbell,S.;Carini,G.;Chen-Wiegart,Y.C.K.;Chu,Y.;Fluerasu,A.;Fukuto,M.;Idir,M.;Jakoncic,J.; Jarrige, I.; et al. Future trends in synchrotron science at NSLS-II. J. Phys. Condens. Matter 2020, 32, 374008. [CrossRef] 126. Hatsui,T.;Graafsma,H.X-rayimagingdetectorsforsynchrotronandXFELsources.IUCrJ2015,2,371–383. [CrossRef] 127. Vaughan,G.B.M.;Baker,R.;Barret,R.;Bonnefoy,J.;Buslaps,T.;Checchia,S.;Duran,D.;Fihman,F.;Got,P.; Kieffer, J.; et al. ID15A at the ESRF-a beamline for high speed operando X-ray diffraction, diffraction tomography and total scattering. J. Synchrotron Radiat. 2020, 27, 515–528. [CrossRef] [PubMed] Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

PDF Image | Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

PDF Search Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

Original File Name Searched:

condensedmatter-05-00075.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)