Understanding interface stability in solid-state batteries

PDF Publication Title:

Understanding interface stability in solid-state batteries ( understanding-interface-stability-solid-state-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 021

157. Afyon, S., Krumeich, F. & Rupp, J. L. M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 3, 18636–18648 (2015). 158. Ong, S. P., Wang, L., Kang, B. & Ceder, G. Li–Fe–P–O2 phase diagram from first principles calculations. Chem. Mater. 20, 1798–1807 (2008). 159. Yi, E., Wang, W., Kieffer, J. & Laine, R. M. Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO). J. Mater. Chem. A 4, 12947–12954 (2016). 160. Ren, Y., Liu, T., Shen, Y., Lin, Y. & Nan, C.-W. Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J. Materiomics 2, 256–264 (2016). 161. Thangadurai, V. & Weppner, W. Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. J. Power Sources 142, 339–344 (2005). 162. Tsai, C.-L. et al. A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes. Sustain. Energy Fuels 3, 280–291 (2019). 163. Bitzer, M., Van Gestel, T. & Uhlenbruck, S. Sol-gel synthesis of thin solid Li7La3Zr2O12 electrolyte films for Li-ion batteries. Thin Solid Films 615, 128–134 (2016). 164. Vardar, G. et al. Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode. Chem. Mater. 30, 6259–6276 (2018). 165. Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010). 166. Ohta, S., Kobayashi, T., Seki, J. & Asaoka, T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power Sources 202, 332–335 (2012). 167. Ma, X., Kang, B. & Ceder, G. High rate micron-sized ordered LiNi0.5Mn1.5O4. J. Electrochem. Soc. 157, A925–A931 (2010). 168. Manthiram, A., Chemelewski, K. & Lee, E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 7, 1339–1350 (2014). 169. Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993). 170. Suzuki, N., Shirai, S., Takahashi, N., Inaba, T. & Shiga, T. A lithium phosphorous oxynitride (LiPON) film sputtered from unsintered Li3PO4 powder target. Solid State Ion. 191, 49–54 (2011). 171. Le Van-Jodin, L., Ducroquet, F., Sabary, F. & Chevalier, I. Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ion. 253, 151–156 (2013). 172. Li, J., Dudney, N. J., Nanda, J. & Liang, C. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 6, 10083–10088 (2014). 173. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000). 174. Alpen, U. V., Rabenau, A. & Talat, G. H. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett. 30, 621–623 (1977). 175. Nazri, G. Preparation, structure and ionic conductivity of lithium phosphide. Solid State Ion. 34, 97–102 (1989). 176. Fingerle, M., Buchheit, R., Sicolo, S., Albe, K. & Hausbrand, R. Reaction and space charge layer formation at the LiCoO2–LiPON interface: insights on defect formation and ion energy level alignment by a combined surface science–simulation approach. Chem. Mater. 29, 7675–7685 (2017). 177. Wang, Z. et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016). 178. Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993). 179. Chen, C. H. & Amine, K. Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ion. 144, 51–57 (2001). 180. Bohnke, O., Bohnke, Cl & Fourquet, J. L. Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion. 91, 21–31 (1996). 181. Shan, Y. J., Chen, L., Inaguma, Y., Itoh, M. & Nakamura, T. Oxide cathode with perovskite structure for rechargeable lithium batteries. J. Power Sources 54, 397–402 (1995). 182. Jiang, Z. et al. Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018). 183. Nakayama, M., Usui, T., Uchimoto, Y., Wakihara, M. & Yamamoto, M. Changes in electronic structure upon lithium insertion into the A-site deficient perovskite type oxides (Li, La) TiO3. J. Phys. Chem. B 109, 4135–4143 (2005). 184. Kishida, K. et al. Microstructure of the LiCoO2 (cathode)/La2/3−xLi3xTiO3 (electrolyte) interface and its influences on the electrochemical properties. Acta Mater. 55, 4713–4722 (2007). 185. Liao, C.-L., Wen, C.-H. & Fung, K.-Z. The stability between perovskite La2/3−xLi3x□1/3−2xTiO3 (3x = 0.3) electrolyte and LiMmOn (M = Mn, Ni and Co) cathodes. J. Alloys Compd. 432, L22–L25 (2007). 186. Kotobuki, M. et al. Compatibility of LiCoO2 and LiMn2O4 cathode materials for Li0.55La0.35TiO3 electrolyte to fabricate all-solid-state lithium battery. J. Power Sources 195, 5784–5788 (2010). 187. Lü, X. et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries. Adv. Sci. 3, 1500359 (2016). 188. Lü, X. et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. Chem. Commun. 50, 11520–11522 (2014). 189. Emly, A., Kioupakis, E. & Van der Ven, A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chem. Mater. 25, 4663–4670 (2013). 190. Zhang, Y., Zhao, Y. & Chen, C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. Phys. Rev. B 87, 134303 (2013). 191. Whangbo, M.-H., Koo, H.-J., Villesuzanne, A. & Pouchard, M. Effect of metal–oxygen covalent bonding on the competition between Jahn–Teller distortion and charge disproportionation in the perovskites of high-spin d4 metal ions LaMnO3 and CaFeO3. Inorg. Chem. 41, 1920–1929 (2002). 192. Braga, M. H., Ferreira, J. A., Stockhausen, V., Oliveira, J. E. & El-Azab, A. Novel Li3ClO based glasses with superionic properties for lithium batteries. J. Mater. Chem. A 2, 5470–5480 (2014). 193. Li, Y. et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries. Angew. Chem. Int. Ed. 55, 9965–9968 (2016). 194. Anantharamulu, N. et al. A wide-ranging review on Nasicon type materials. J. Mater. Sci. 46, 2821–2837 (2011). 195. Arbi, K., Bucheli, W., Jiménez, R. & Sanz, J. High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 35, 1477–1484 (2015). 196. Fu, J. Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5. Solid State Ion. 104, 191–194 (1997). 197. Feng, J. K., Lu, L. & Lai, M. O. Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3. J. Alloys Compd. 501, 255–258 (2010). 198. Hartmann, P. et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064–21074 (2013). 199. Wu, B. et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11, 1803–1810 (2018). 200. He, L. et al. Failure mechanism and interface engineering for NASICON structure all-solid-state lithium metal batteries. ACS. Appl. Mater. Interfaces 11, 20895–20904 (2019). 201. Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591–599 (2019). 202. Tippens, J. et al. Visualizing chemo-mechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019). 203. Xu, X., Wen, Z., Wu, X., Yang, X. & Gu, Z. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3−xLi2O (x=0.0–0.20) with good electrical and electrochemical properties. J. Am. Ceram. Soc. 90, 2802–2806 (2007). 204. Kim, H.-S. et al. Characterization of sputter-deposited LiCoO2 thin film grown on NASICON-type electrolyte for application in all-solid-state rechargeable lithium battery. ACS Appl. Mater. Interfaces 9, 16063–16070 (2017). 205. Li, Y. et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc. Natl Acad. Sci. USA 113, 13313–13317 (2016). 206. El-Shinawi, H., Regoutz, A., Payne, D. J., Cussen, E. J. & Corr, S. A. NASICON LiM2(PO4)3 electrolyte (M= Zr) and electrode (M= Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance. J. Mater. Chem. A 6, 5296–5303 (2018). 207. Kato, T. et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J. Power Sources 260, 292–298 (2014). 208. Kim, Y. et al. High voltage stability of LiCoO2 particles with a nano-scale Lipon coating. Electrochim. Acta 56, 6573–6580 (2011). 209. Martha, S. K., Nanda, J., Kim, Y., Unocic, R. R. & Pannala, S. Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J. Mater. Chem. A 1, 5587–5595 (2013). 210. Song, J., Jacke, S., Becker, D., Hausbrand, R. & Jaegermann, W. Stabilization of thin film LiCoO2 electrode by LiPON coating. Electrochem. Solid-State Lett. 14, A11–A13 (2011). 211. Li, X., et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J. Energy Chem. 40:39-45. 212. Ito, S. et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power Sources 248, 943–950 (2014). 213. Sakuda, A., Kitaura, H., Hayashi, A., Tadanaga, K. & Tatsumisago, M. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses. Electrochem. Solid-State Lett. 11, A1–A3 (2008). 214. Sakurai, Y., Sakuda, A., Hayashi, A. & Tatsumisago, M. Preparation of amorphous Li4SiO4–Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries. Solid State Ion. 182, 59–63 (2011). 215. Jung, S. H. et al. Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem. Mater. 30, 8190–8200 (2018). 216. Chen, K. et al. Effect of introducing interlayers into electrode/electrolyte interface in all-solid-state battery using sulfide electrolyte. Solid State Ion. 327, 150–156 (2018). 217. Kwak, H. W. & Park, Y. J. Cathode coating using LiInO2-LiI composite for stable sulfide-based all-solid- state batteries. Sci. Rep. 9, 8099 (2019). 218. Kwak, H. W. & Park, Y. J. Li2MoO4 coated Ni-rich cathode for all-solid-state batteries. Thin Solid Films 660, 625–630 (2018). 219. Ohta, S. et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013). 220. Liu, Y. et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl. Mater. Interfaces 10, 31240–31248 (2018). 221. Sang, L. et al. Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries. Chem. Mater. 30, 8747–8756 (2018). 222. Ruan, Y. et al. Acid induced conversion towards robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state battery. J. Mater. Chem. A 7, 14565–14574 (2019). 223. Zhang, Z. et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 10, 2556–2565 (2018). 224. Zhu, Y., He, X. & Mo, Y. Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv. Sci. 4, 1600517 (2017). 225. Cheng, Q. et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 3, 1510–1522 (2019). 226. Shigeno, M. et al. New lithium-conducting nitride glass Li3BN2. Solid State Ion. 339, 114985 (2019). 227. Wang, Y., Richards, W. D., Bo, S.-H., Miara, L. J. & Ceder, G. Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X = O, S, Se). Chem. Mater. 29, 7475–7482 (2017). 228. Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018). Reviews Nature reviews | Materials

PDF Image | Understanding interface stability in solid-state batteries

PDF Search Title:

Understanding interface stability in solid-state batteries

Original File Name Searched:

2019_xiao_nature_review.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)