Understanding interface stability in solid-state batteries

PDF Publication Title:

Understanding interface stability in solid-state batteries ( understanding-interface-stability-solid-state-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 022

Reviews 229. Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019). 230. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018). 231. Li, X. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019). 232. Krauskopf, T., Culver, S. P. & Zeier, W. G. Bottleneck of diffusion and inductive effects in Li10Ge1−xSnxP2S12. Chem. Mater. 30, 1791–1798 (2018). 233. Nolan, A. M., Zhu, Y., He, X., Bai, Q. & Mo, Y. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule 2, 2016–2046 (2018). 234. Sendek, A. D. et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 10, 306–320 (2017). 235. Pradel, A. & Ribes, M. Lithium chalcogenide conductive glasses. Mater. Chem. Phys. 23, 121–142 (1989). 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. Hori, S. et al. Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+ δ P2− δS12 (M = Si, Sn). Faraday Discuss. 176, 83–94 (2015). Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2017). Yu, C. et al. Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li–S batteries. J. Mater. Chem. A 7, 10412–10421 (2019). Smith, A. J., Burns, J. C. & Dahn, J. R. A high precision study of the Coulombic efficiency of Li-ion batteries. Electrochem. Solid-State Lett. 13, A177–A179 (2010). Smith, A. J., Burns, J. C., Trussler, S. & Dahn, J. R. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. J. Electrochem. Soc. 157, A196–A202 (2010). Farhad, S. & Nazari, A. Introducing the energy efficiency map of lithium-ion batteries. Int. J. Energy Res. 43, 931–944 (2019). Meister, P. et al. Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem. Mater. 28, 7203–7217 (2016). Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015). Xiong, S. et al. Computation-guided design of LiTaSiO5, a new lithium ionic conductor with sphene structure. Adv. Energy Mater. 9, 1803821 (2019). He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017). Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013). 250. Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011). Acknowledgements The work on ionic conductivity design was funded by the Samsung Advanced Institute of Technology. The development of the interfacial reactivity theory was funded by the Materials Project Program (grant no. KC23MP) through the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231. Some of the work on sulfide electrolytes was supported by the Assistant Secretary of Energy Efficiency and Renewable Energy, Vehicle Technologies Office of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 under the Advanced Battery Materials Research (BMR) Program. Author contributions G.C. conceived the manuscript. Y.X. researched the data. S.-H.B. and Y.X. wrote the section on sulfides. Y.X. wrote the sections on garnets and coatings. J.C.K. wrote the sections on LiPON and antiperovskites. Y.W. and Y.X. wrote the sec- tions on perovskites and NASICONs. G.C., Y.X. and L.J.M. wrote the discussion and conclusions sections. Y.X., Y.W. and L.J.M. designed the table and figures. All authors edited and reviewed the manuscript before submission. Competing interests The authors declare no competing interests. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. © Springer Nature Limited 2019 236. Duchêne, L. et al. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chem. Commun. 53, 4195–4198 (2017). 237. Sadikin, Y., Brighi, M., Schouwink, P. & Cˇerny`, R. Superionic conduction of sodium and lithium in anion-mixed hydroborates Na3BH4B12H12 and (Li0.7Na0.3)3BH4B12H12. Adv. Energy Mater. 5, 1501016 (2015). 238. Dewald, G., et.al. Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem. Mater., 31:8328-8337, 2019. www.nature.com/natrevmats

PDF Image | Understanding interface stability in solid-state batteries

PDF Search Title:

Understanding interface stability in solid-state batteries

Original File Name Searched:

2019_xiao_nature_review.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)