logo

curcumin nanoparticles via dispersion by supercritical cO2

PDF Publication Title:

curcumin nanoparticles via dispersion by supercritical cO2 ( curcumin-nanoparticles-via-dispersion-by-supercritical-co2 )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

Zhao et al Dovepress Given the reduction in particle size and crystallinity, the fabricated curcumin nanoparticles possessed higher solubility and hence a higher dissolution rate than original curcumin. These results demonstrated that the SEDS process is an effective method for preparing curcumin nanoparticles and improving the solubility and dissolution rate of poorly water- soluble drugs. Acknowledgments We thank the Hong Kong Research Grant Council and the Hong Kong Polytechnic University through projects PolyU5242/09E and G-YM63. We would also like to thank the support provided by the Natural Science Foundation of Hubei Province through project 2014CFB839, Doctoral Research Fund of Wuhan University of Technology through project 471-40120093, Guangdong Provincial Department of Science and Technology through projects 2012B050800002 and 2012B091000143. Disclosure The authors report no conflicts of interest in this work. References 1. Sun Y, Du L, Liu Y, et al. Transdermal delivery of the in situ hydrogels of curcumin and its inclusion complexes of hydroxypropyl-β-cyclodextrin for melanoma treatment. Int J Pharm. 2014;469(1):31–39. 2. Bhawana, Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nano- particles: preparation, characterization, and antimicrobial study. J Agr Food Chem. 2011;59(5):2056–2061. 3. Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformula- tions: a future nanomedicine for cancer. Drug Discov Today. 2012; 17(1–2):71–80. 4. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bio- availability of curcumin: problems and promises. Mol Pharm. 2007; 4(6):807–818. 5. Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: bioavailability and antioxidant proper- ties of liposome-encapsulated curcumin. J Agr Food Chem. 2009; 57(19):9141–9146. 6. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin- phospholipid complex: preparation, therapeutic evaluation and phar- macokinetic study in rats. Int J Pharm. 2007;330(1–2):155–163. 7. Marcolino VA, Zanin GM, Durrant LR, Benassi MDT, Matioli G. Interaction of curcumin and bixin with β-cyclodextrin: complexation methods, stability, and applications in food. J Agr Food Chem. 2011; 59(7):3348–3357. 8. Akhtar F, Rizvi MM, Kar SK. Oral delivery of curcumin bound to chi- tosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv. 2012;30(1):310–320. 9. Gupta V, Aseh A, Rios CN, Aggarwal BB, Mathur AB. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomed. 2009;4(1):115–122. 10. Patel A, Hu YC, Tiwari JK. Synthesis and characterization of zein- curcumin colloidal particles. Soft Matter. 2010;6(24):6192–6199. 11. Jithan AV, Madhavi K, Madhavi M, Prabhakar K. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int J Pharm Invest. 2011; 1(2):119–125. 12. Beloqui A, Coco R, Memvanga PB, Ucakar B, des Rieux A, Préat V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflam- matory bowel disease. Int J Pharm. 2014;473(1–2):203–212. 13. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interf Sci. 2010;35(1):19–29. 14. Feng R, Song Z, Zhai G. Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Int J Nanomedicine. 2012;7:4089–4098. 15. Sun XZ, Williams GR, Hou XX, Zhu LM. Electrospun curcumin- loaded fibers with potential biomedical applications. Carbohyd Polym. 2013;94(1):147–153. 16. MerrellJG,McLaughlinbSW,TieL,LaurencindCT,ChenAF,NairLS. Curcumin loaded poly(ε-caprolactone) nanofibers: wound dressing with antioxidant and anti-inflammatory properties. Clin Exp Pharmacol P. 2009;36(12):1149–1156. 17. BrahatheeswaranD,MathewA,AswathyRG,etal.Hybridfluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomed Mater. 2012;7(4):045001. 18. Tagami T, Imao Y, Ito S, Nakada A, Ozeki T. Simple and effective preparation of nano-pulverized curcumin by femtosecond laser ablation and the cytotoxic effect on C6 rat glioma cells in vitro. Int J Pharm. 2014;468(1–2):91–96. 19. MargulisK,MagdassiS,LeeHS,MacoskoCW.Formationofcurcumin nanoparticles by flash nanoprecipitation from emulsions. J Colloid Interface Sci. 2014;434:65–70. 20. LiuG,WangW,WangH,JiangY.Preparationof10-hydroxycamptothecin proliposomes by the supercritical CO2 anti-solvent process. Chem Eng J. 2014;243:289–296. 21. Zhao Z, Chen AZ, Li Y, et al. Fabrication of silk fibroin nanoparticles for controlled drug delivery. J Nanopart Res. 2012;14(4):736–745. 22. Zhao Z, Li Y, Zhang Y, et al. Development of silk fibroin modified poly(l-lactide)-poly(ethylene glycol)-poly(l-lactide) nanoparticles in supercritical CO2. Powder Technol. 2014;268:118–125. 23. Zhao Z, Li Y, Chen AZ, et al. Generation of silk fibroin nanoparticles via solution-enhanced dispersion by supercritical CO2. Ind Eng Chem Res. 2013;52(10):3752–3761. 24. Jin HY, Hemingway M, Xia F, Li NS, Zhao YP. Production of β-Carotene nanoparticles by the solution enhanced dispersion with enhanced mass transfer by ultrasound in supercritical CO2 (SEDS-EM). Ind Eng Chem Res. 2011;50(23):13475–13484. 25. Kalani M, Yunus R. Application of supercritical antisolvent method in drug encapsulation: a review. Int J Nanomedicine. 2011;6: 1429–1442. 26. Lee BM, Kim SJ, Lee BC, Kim HS, Kim H, Lee YW. Preparation of micronized β-HMX using supercritical carbon dioxide as antisolvent. Ind Eng Chem Res. 2011;50(15):9107–9115. 27. Wang Q, Guan YX, Yao SJ, Zhu ZQ. Microparticle formation of sodium cellulose sulfate using supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer. Chem Eng J. 2010;159:220–229. 28. Reverchon E, De Marco I. Supercritical antisolvent precipitation of cephalosporins. Powder Technol. 2006;164(3):139–146. 29. Su CS, Lo WS, Lien LH. Micronization of fluticasone propionate using supercritical antisolvent process. Chem Eng Technol. 2011;34(4): 535–541. 30. Chen AZ, Li L, Wang SB, et al. Nanonization of methotrexate by solution-enhanced dispersion by supercritical CO2. J Supercrit Fluid. 2012;67:7–13. 31. Montes A, Tenorio A, Gordill MD, Pereyra C, Martinez de la Ossa EJ. Screening design of experiment applied to supercritical antisolvent pre- cipitation of amoxicillin: exploring new miscible conditions. J Supercrit Fluid. 2010;51:399–403. 32. SongZ,ZhuW,LiuN,YangF,FengR.Linolenicacid-modifiedPEG-PCL micelles for curcumin delivery. Int J Pharm. 2014;471(1–2):312–321. 33. Xie X, Tao Q, Zou Y, et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agr Food Chem. 2011;59(17):9280–9289. International Journal of Nanomedicine 2015:10 3180 submit your manuscript | www.dovepress.com Dovepress

PDF Image | curcumin nanoparticles via dispersion by supercritical cO2

curcumin-nanoparticles-via-dispersion-by-supercritical-co2-010

PDF Search Title:

curcumin nanoparticles via dispersion by supercritical cO2

Original File Name Searched:

cucumin-nanoparticles-co2.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP