logo

Nanocurcumin Promising Candidate for Therapeutic Applications

PDF Publication Title:

Nanocurcumin Promising Candidate for Therapeutic Applications ( nanocurcumin-promising-candidate-therapeutic-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 019

Karthikeyan et al. Nanocurcumin: A Promising Candidate for Therapeutic Applications Das, R. K., Kasoju, N., and Bora, U. (2010). Encapsulation of curcumin in alginate- chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed.: Nanotechnol. Biol. Med. 6, 153–160. doi: 10.1016/ j.nano.2009.05.009 Debjit Bhowmik, C., Kumar, K. S., Chandira, M., and Jayakar, B. (2009). Turmeric: a herbal and traditional medicine. Arch. Appl. Sci. Res. 1, 86–108. Den Hartogh, D. J., Gabriel, A., and Tsiani, E. (2020). Antidiabetic Properties of Curcumin I: Evidence from In Vitro Studies. Nutrients 12, 118. doi: 10.3390/ nu12010118 Dende, C., Meena, J., Nagarajan, P., Nagaraj, V. A., Panda, A. K., and Padmanaban, G. (2017). Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria. Sci. Rep. 7, 10062. doi: 10.1038/s41598-017-10672-9 Dhar, S., and Marrache, S. M. (2013). Nanoparticles for mitochondrial trafficking of agents. WO Patent Number 2013123298 A1. Dhirendra, K., Lewis, S., Udupa, N., and Atin, K. (2009). Solid dispersions: a review. Pakistan J. Pharmaceut. Sci. 22 (2), 234–46. Dhule, S. S., Penfornis, P., Frazier, T., Walker, R., Feldman, J., Tan, G., et al. (2012). Curcumin-loaded g-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomed.: Nanotechnol. Biol. Med. 8, 440–451. doi: 10.1016/ j.nano.2011.07.011 Dolati, S., Babaloo, Z., Ayromlou, H., Ahmadi, M., Rikhtegar, R., Rostamzadeh, D., et al. (2019). Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. J. Neuroimmunol. 327, 15–21. doi: 10.1016/j.jneuroim.2019.01.007 Elbialy, N. S., Abdelfatah, E. A., and Khalil, W. A. (2019). Antitumor activity of curcumin-green synthesized gold nanoparticles: In vitro study. BioNanoScience 9, 813–820. doi: 10.1007/s12668-019-00660-w Esatbeyoglu, T., Huebbe, P., Ernst, I. M., Chin, D., Wagner, A. E., and Rimbach, G. (2012). Curcumin—from molecule to biological function. Angewandte Chem. Int. Ed. 51, 5308–5332. doi: 10.1002/anie.201107724 Fakhri, S., Alizadeh, A., and Shahryari, A. (2019). Effect of 6 Weeks of High Intensity Interval Training with Nano-curcumin Supplement on Antioxidant Defense and Lipid Peroxidation in Overweight Girls-Clinical Trial. Iranian J. Diabetes Obesity 11, 173–180. doi: 10.18502/ijdo.v11i3.2606 Faraji, A. H., and Wipf, P. (2009). Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 17, 2950–2962. doi: 10.1016/j.bmc.2009.02.043 Farhood, B., Mortezaee, K., Goradel, N. H., Khanlarkhani, N., Salehi, E., Nashtaei, M. S., et al. (2019). Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol. 234, 5728–5740. doi: 10.1002/ jcp.27442 Fathy Abd-Ellatef, G.-E., Gazzano, E., Chirio, D., Hamed, A. R., Belisario, D. C., Zuddas, C., et al. (2020). Curcumin-Loaded Solid Lipid Nanoparticles Bypass P-Glycoprotein Mediated Doxorubicin Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics 12, 96. doi: 10.3390/pharmaceutics12020096 Fernández-Bedmar, Z., and Alonso-Moraga, A. (2016). In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties. Food Chem. Toxicol. 98, 89–99. doi: 10.1016/ j.fct.2016.10.011 Ferrari, R., Sponchioni, M., Morbidelli, M., and Moscatelli, D. (2018). Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale 10, 22701– 22719. doi: 10.1039/C8NR05933K Flora, G., Gupta, D., and Tiwari, A. (2013). Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit. Rev. Ther.TM Drug Carrier Syst. 30(4), 331–368. doi: 10.1615/CritRevTherDrugCarrierSyst.2013007236 Fonseca-Santos, B., Dos Santos, A. M., Rodero, C. F., Gremião, M. P. D., and Chorilli, M. (2016). Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery. Int. J. Nanomed. 11, 4553. doi: 10.2147/IJN.S108675 Gandapu, U., Chaitanya, R., Kishore, G., Reddy, R. C., and Kondapi, A. K. (2011). Curcumin-loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro. PloS One 6, e23388. doi: 10.1371/journal.pone.0023388 Ganugula, R., Arora, M., Jaisamut, P., Wiwattanapatapee, R., Jørgensen, H. G., Venkatpurwar, V. P., et al. (2017). Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. Br. J. Pharmacol. 174, 2074–2084. doi: 10.1111/bph.13816 Gessner, A., Waicz, R., Lieske, A., Paulke, B.-R., Mäder, K., and Müller, R. (2000). Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int. J. Pharmaceut. 196, 245–249. doi: 10.1016/S0378-5173 (99)00432-9 Ghalandarlaki, N., Alizadeh, A. M., and Ashkani-Esfahani, S. (2014). Nanotechnology-applied curcumin for different diseases therapy. BioMed. Res. Int. 2014, 394264. doi: 10.1155/2014/394264 Ghosh, M., and Ryan, R. O. (2014). ApoE enhances nanodisk-mediated curcumin delivery to glioblastoma multiforme cells. Nanomedicine 9, 763–771. doi: 10.2217/nnm.13.35 Ghosh, M., Singh, A. T., Xu, W., Sulchek, T., Gordon, L. I., and Ryan, R. O. (2011). Curcumin nanodisks: formulation and characterization. Nanomed.: Nanotechnol. Biol. Med. 7, 162–167. doi: 10.1016/j.nano.2010.08.002 Giri, T. K., Thakur, D., Alexander, A., Badwaik, H., Tripathy, M., and Tripathi, D. K. (2013). Biodegradable IPN hydrogel beads of pectin and grafted alginate for controlled delivery of diclofenac sodium. J. Mater. Sci.: Mater. Med. 24, 1179– 1190. doi: 10.1007/s10856-013-4884-7 Giri, T. (2016). “Alginate containing nanoarchitectonics for improved cancer therapy,” in Nanoarchitectonics for Smart Delivery and Drug Targeting. Elsevier, 1st ed. Eds. A. M. Holban and A. M. Grumezescu (Amsterdam, Netherlands: William Andrew), 565–588. Goel, A., Kunnumakkara, A. B., and Aggarwal, B. B. (2008). Curcumin as “Curecumin”: from kitchen to clinic. Biochem. Pharmacol. 75, 787–809. doi: 10.1016/j.bcp.2007.08.016 Gong, C., Deng, S., Wu, Q., Xiang, M., Wei, X., Li, L., et al. (2013). Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials 34, 1413–1432. doi: 10.1016/ j.biomaterials.2012.10.068 Gorabi, A. M., Hajighasemi, S., Kiaie, N., Rosano, G. M., Sathyapalan, T., Al- Rasadi, K., et al. (2019). Anti-fibrotic effects of curcumin and some of its analogues in the heart. Heart Failure Rev., 1–13. doi: 10.1007/s10741-019- 09854-6 Gou, M., Men, K., Shi, H., Xiang, M., Zhang, J., Song, J., et al. (2011). Curcumin- loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 3, 1558–1567. doi: 10.1039/c0nr00758g Groundwater, P. W., Narlawar, R., Liao, V. W. Y., Bhattacharya, A., Srivastava, S., Kunal, K., et al. (2017). A carbocyclic curcumin inhibits proliferation of Gram- positive bacteria by targeting FtsZ. Biochemistry 56, 514–524. doi: 10.1021/ acs.biochem.6b00879 Guo, S. (2019). “Encapsulation of curcumin into b-cyclodextrins inclusion: A review,” in 2nd International Conference on Biofilms (ChinaBiofilms 2019). Eds. Z. B. Xu, D. Q. Chen and J. Y. Liu (Guangzhou, China: EDP Sciences), 1–4. Gupta, S. C., Kim, J. H., Kannappan, R., Reuter, S., Dougherty, P. M., and Aggarwal, B. B. (2011). Role of nuclear factor-k B-mediated inflammatory pathways in cancer-related symptoms and their regulation by nutritional agents. Exp. Biol. Med. 236, 658–671. doi: 10.1258/ebm.2011.011028 Gupta, S. C., Patchva, S., and Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 15, 195–218. doi: 10.1208/s12248-012-9432-8 Gutierres, V. O., Assis, R. P., Arcaro, C. A., Oliveira, J. O., Lima, T. F. O., Beretta, A. L. R. Z., et al. (2019). Curcumin improves the effect of a reduced insulin dose on glycemic control and oxidative stress in streptozotocin-diabetic rats. Phytother. Res. 33, 976–988. doi: 10.1002/ptr.6291 Han, S., and Yang, Y. (2005). Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments 64, 157–161. doi: 10.1016/j.dyepig.2004.05.008 Heger, M., Van Golen, R. F., Broekgaarden, M., and Michel, M. C. (2014). The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev. 66, 222–307. doi: 10.1124/pr.110.004044 Hewlings, S., and Kalman, D. (2017). Curcumin: a review of its’ effects on human health. Foods 6, 92. doi: 10.3390/foods6100092 Hosseini, A., Rasaie, D., Soleymani Asl, S., Nili Ahmadabadi, A., and Ranjbar, A. (2019). Evaluation of the protective effects of curcumin and nanocurcumin against lung injury induced by sub-acute exposure to paraquat in rats. Toxin Rev., 1–9. doi: 10.1080/15569543.2019.1675707 Frontiers in Pharmacology | www.frontiersin.org 19 May 2020 | Volume 11 | Article 487

PDF Image | Nanocurcumin Promising Candidate for Therapeutic Applications

nanocurcumin-promising-candidate-therapeutic-applications-019

PDF Search Title:

Nanocurcumin Promising Candidate for Therapeutic Applications

Original File Name Searched:

fphar-11-00487.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP