logo

Nanocurcumin Promising Candidate for Therapeutic Applications

PDF Publication Title:

Nanocurcumin Promising Candidate for Therapeutic Applications ( nanocurcumin-promising-candidate-therapeutic-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 020

Karthikeyan et al. Nanocurcumin: A Promising Candidate for Therapeutic Applications Hotsumi, M., Tajiri, M., Nikaido, Y., Sato, T., Makabe, K., and Konno, H. (2019). Design, synthesis, and evaluation of a water soluble C5-monoketone type curcumin analogue as a potent amyloid b aggregation inhibitor. Bioorg. Med. Chem. Lett. 29, 2157–2161. doi: 10.1016/j.bmcl.2019.06.052 Hu, K., Huang, X., Gao, Y., Huang, X., Xiao, H., and Mcclements, D. J. (2015). Core–shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chem. 182, 275–281. doi: 10.1016/j.foodchem.2015.03.009 Huang, M. T., Lysz, T., Ferraro, T., Abidi, T. F., Laskin, J. D., and Conney, A. H. (1991). Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res. 51, 813–819. Huang, F., Gao, Y., Zhang, Y., Cheng, T., Ou, H., Yang, L., et al. (2017). Silver- decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl. Mater. Interf. 9, 16880–16889. doi: 10.1021/ acsami.7b03347 Huang, M., Liang, C., Tan, C., Huang, S., Ying, R., Wang, Y., et al. (2019). Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct. 10, 6447–6458. doi: 10.1039/C9FO01338E Huo, X., Zhang, Y., Jin, X., Li, Y., and Zhang, L. (2019). A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid b aggregation in Alzheimer’s disease. J. Photochem. Photobiol. B.: Biol. 190, 98–102. doi: 10.1016/j.jphotobiol.2018.11.008 Imran, M., Ullah, A., Saeed, F., Nadeem, M., Arshad, M. U., and Suleria, H. (2018). Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit. Rev. Food Sci. Nutr. 58, 1271–1293. doi: 10.1080/10408398.2016.1252711 Itokawa, H., Shi, Q., Akiyama, T., Morris-Natschke, S. L., and Lee, K.-H. (2008). Recent advances in the investigation of curcuminoids. Chin. Med. 3, 11. doi: 10.1186/1749-8546-3-11 Jagetia, G. C., and Rajanikant, G. K. (2012). Acceleration of wound repair by curcumin in the excision wound of mice exposed to different doses of fractionated g radiation. Int. Wound J. 9, 76–92. doi: 10.1111/j.1742- 481X.2011.00848.x Jagetia, G. C., and Rajanikant, G. K. (2015). Curcumin stimulates the antioxidant mechanisms in mouse skin exposed to fractionated g-irradiation. Antioxidants 4, 25–41. doi: 10.3390/antiox4010025 Javadi, S., Rostamizadeh, K., Hejazi, J., Parsa, M., and Fathi, M. (2018). Curcumin mediated down-regulation of aVb3 integrin and up-regulation of pyruvate dehydrogenase kinase 4 (PDK4) in Erlotinib resistant SW480 colon cancer cells. Phytother. Res. 32, 355–364. doi: 10.1002/ptr.5984 Jeong, S.-O., Oh, G.-S., Ha, H.-Y., Koo, B. S., Kim, H. S., Kim, Y.-C., et al. (2009). Dimethoxycurcumin, a synthetic curcumin analogue, induces heme oxygenase-1 expression through Nrf2 activation in RAW264. 7 macrophages. J. Clin. Biochem. Nutr. 44, 79–84. doi: 10.3164/jcbn.08-194 Jones, M.-C., Jones, S. A., Riffo-Vasquez, Y., Spina, D., Hoffman, E., Morgan, A., et al. (2014). Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. J. Controlled Release 183, 94– 104. doi: 10.1016/j.jconrel.2014.03.022 Jovanovic, S. V., Steenken, S., Boone, C. W., and Simic, M. G. (1999). H-atom transfer is a preferred antioxidant mechanism of curcumin. J. Am. Chem. Soc. 121, 9677–9681. doi: 10.1021/ja991446m Kakkar, V., Singh, S., Singla, D., and Kaur, I. P. (2011). Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol. Nutr. Food Res. 55, 495–503. doi: 10.1002/mnfr.201000310 Kakkar, V., Muppu, S. K., Chopra, K., and Kaur, I. P. (2013). Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur. J. Pharm. Biopharm. 85, 339–345. doi: 10.1016/j.ejpb.2013.02.005 Kakran, M., Sahoo, N. G., Tan, I.-L., and Li, L. (2012). Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J. Nanoparticle Res. 14, 757. doi: 10.1007/s11051-012-0757-0 Kant, V., Gopal, A., Pathak, N. N., Kumar, P., Tandan, S. K., and Kumar, D. (2014). Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int. Immunopharmacol. 20, 322–330. doi: 10.1016/j.intimp.2014.03.009 Karri, V. V. S. R., Kuppusamy, G., Talluri, S. V., Mannemala, S. S., Kollipara, R., Wadhwani, A. D., et al. (2016). Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 93, 1519–1529. doi: 10.1016/j.ijbiomac.2016.05.038 Kaur, S., Modi, N. H., Panda, D., and Roy, N. (2010). Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ–a structural insight to unveil antibacterial activity of curcumin. Eur. J. Med. Chem. 45, 4209–4214. doi: 10.1016/j.ejmech.2010.06.015 Khamar, B. M., Gogia, A. P., Goda, C. C., Shenoy, D. B., Shrivastava, R. R., Patravale, V. B., et al. (2013). Pharmaceutical compositions of curcumin. U.S Patent Number 9474727B2. Khan, M. N., Haggag, Y. A., Lane, M. E., Mccarron, P. A., and Tambuwala, M. M. (2018). Polymeric nano-encapsulation of curcumin enhances its anti-cancer activity in breast (MDA-MB231) and lung (A549) cancer cells through reduction in expression of HIF-1a and nuclear p65 (REL A). Curr. Drug Delivery 15, 286–295. doi: 10.2174/1567201814666171019104002 Khan, A. Q., Ahmed, E. I., Elareer, N., Fathima, H., Prabhu, K. S., Siveen, K. S., et al. (2020). Curcumin-Mediated Apoptotic Cell Death in Papillary Thyroid Cancer and Cancer Stem-Like Cells through Targeting of the JAK/STAT3 Signaling Pathway. Int. J. Mol. Sci. 21, 438. doi: 10.3390/ijms21020438 Kim, T. H., Jiang, H. H., Youn, Y. S., Park, C. W., Tak, K. K., Lee, S., et al. (2011). Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int. J. Pharmaceut. 403, 285– 291. doi: 10.1016/j.ijpharm.2010.10.041 Kim, S., Diab, R., Joubert, O., Canilho, N., and Pasc, A. (2016). Core–shell microcapsules of solid lipid nanoparticles and mesoporous silica for enhanced oral delivery of curcumin. Colloids Surfaces B.: Biointerf. 140, 161– 168. doi: 10.1016/j.colsurfb.2015.12.040 Kim, J.-Y., Lee, Y.-M., Kim, D.-W., Min, T., and Lee, S.-J. (2020). Nanosphere Loaded with Curcumin Inhibits the Gastrointestinal Cell Death Signaling Pathway Induced by the Foodborne Pathogen Vibrio vulnificus. Cells 9, 631. doi: 10.3390/cells9030631 Koeberle, A., Northoff, H., and Werz, O. (2009). Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Mol. Cancer Ther. 8, 2348–2355. doi: 10.1158/1535-7163.MCT-09- 0290 Krausz, A. E., Adler, B. L., Cabral, V., Navati, M., Doerner, J., Charafeddine, R. A., et al. (2015). Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomed.: Nanotechnol. Biol. Med. 11, 195–206. doi: 10.1016/j.nano.2014.09.004 Kulac, M., Aktas, C., Tulubas, F., Uygur, R., Kanter, M., Erboga, M., et al. (2013). The effects of topical treatment with curcumin on burn wound healing in rats. J. Mol. Histol. 44, 83–90. doi: 10.1007/s10735-012-9452-9 Kumar, A., Mohapatra, S. S., and Cameron, D. F. (2009). Nanoparticle targeted drug delivery to the lungs using extra-testicular sertoli cells. WO Patent No 2009105278A2. Kumar, K. S., Gnanaprakash, D., Mayilvaganan, K., Arunraj, C., and Mohankumar, S. (2012). Chitosan-gold nanoparticles as delivery systems for curcumin. Int. J. Pharmaceut. Sci. Res. 3, 4533. Kumari, A., Singh, D., Dash, D., and Singh, R. (2019). Intranasal curcumin protects against LPS-induced airway remodeling by modulating toll-like receptor-4 (TLR-4) and matrixmetalloproteinase-9 (MMP-9) expression via affecting MAP kinases in mouse model. Inflammopharmacology 27, 731–748. doi: 10.1007/s10787-018-0544-3 Kurzrock, R., Li, L., Mehta, K., and Aggarawal, B. B. (2011). Liposomal curcumin for treatment of cancer. United States Patent No US20060067998A1. Kwon, Y. (2014). Curcumin as a cancer chemotherapy sensitizing agent. J. Korean Soc. Appl. Biol. Chem. 57, 273–280. doi: 10.1007/s13765-014-4077-1 Lee, S. E., Park, H. R., Jeon, S., Han, D., and Park, Y. S. (2020). Curcumin attenuates acrolein-induced COX-2 expression and prostaglandin production in human umbilical vein endothelial cells. J. Lipid Atheroscl. 9, 184–194. doi: 10.12997/jla.2020.9.1.184 Li, D. (2017). Curcumin long-circulating nanoliposome carrier of enoxolone mediation and preparation method. Chinese Patent Number 104689321B. Li, X., Chen, S., Zhang, B., Li, M., Diao, K., Zhang, Z., et al. (2012). In situ Li, injectable nano-composite hydrogel composed of curcumin, N, O- carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharmaceut. 437, 110–119. doi: 10.1016/j.ijpharm.2012.08.001 B., Takeda, T., Tsuiji, K., Wong, T. F., Tadakawa, M., Kondo, A., et al. (2013). Curcumin induces cross-regulation between autophagy and apoptosis in uterine leiomyosarcoma cells. Int. J. Gynecol. Cancer 23, 803–808. doi: 10.1097/IGC.0b013e31828c9581 Frontiers in Pharmacology | www.frontiersin.org 20 May 2020 | Volume 11 | Article 487

PDF Image | Nanocurcumin Promising Candidate for Therapeutic Applications

nanocurcumin-promising-candidate-therapeutic-applications-020

PDF Search Title:

Nanocurcumin Promising Candidate for Therapeutic Applications

Original File Name Searched:

fphar-11-00487.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP