logo

Nanocurcumin Promising Candidate for Therapeutic Applications

PDF Publication Title:

Nanocurcumin Promising Candidate for Therapeutic Applications ( nanocurcumin-promising-candidate-therapeutic-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 021

Karthikeyan et al. Nanocurcumin: A Promising Candidate for Therapeutic Applications Li, J., Lee, I. W., Shin, G. H., Chen, X., and Park, H. J. (2015). Curcumin-Eudragit® E PO solid dispersion: a simple and potent method to solve the problems of curcumin. Eur. J. Pharmaceut. Biopharmaceut. 94, 322–332. doi: 10.1016/ j.ejpb.2015.06.002 Li, Y., Gu, Z., Zhang, C., Li, S., Zhang, L., Zhou, G., et al. (2018). Synthesis, characterization and ROS-mediated antitumor effects of palladium (II) complexes of curcuminoids. Eur. J. Med. Chem. 144, 662–671. doi: 10.1016/ j.ejmech.2017.12.027 Liang, H., Friedman, J. M., and Nacharaju, P. (2017). Fabrication of biodegradable PEG–PLA nanospheres for solubility, stabilization, and delivery of curcumin. Artif. Cells Nanomed. Biotechnol. 45, 297–304. doi: 10.3109/ 21691401.2016.1146736 Lim,K.J.,Bisht,S.,Bar,E.E.,Maitra,A.,andEberhart,C.G.(2011).Apolymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem- like fraction in malignant brain tumors. Cancer Biol. Ther. 11, 464–473. doi: 10.4161/cbt.11.5.14410 Lin, J. K. (2007). “Molecular targets of curcumin,” in The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Advances In Experimental Medicine And Biology, vol. 595 . Eds. B. B. Aggarwal, Y. J. Surh and S. Shishodia (Boston, MA: Springer). Liu, L., Sun, L., Wu, Q., Guo, W., Li, L., Chen, Y., et al. (2013). Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int. J. Pharmaceut. 443, 175–182. doi: 10.1016/j.ijpharm.2012.12.032 Liu, Y., Wei, W., Wujun, D., Huazhen, H., Xuejun, X., Yuesheng, H., et al. (2017). Phospholipid/chitosan drug delivery system, preparation method and uses. Chinese Ptent Number 104689321B. Liu, R., Pei, Q., Shou, T., Zhang, W., Hu, J., and Li, W. (2019). Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int. J. Nanomed. 14, 4091. doi: 10.2147/ IJN.S203222 Lourestanpour, P., Babaahmadi-Rezaei, H., and Shahanipour, K. (2017). Curcumin as an Environmental Potent Antioxidant Decreases Risk of Arthrosclerosis. Arch. Hygiene Sci. 6, 105–110. doi: 10.29252/ArchHygSci.6.1.105 Ma, Z., Shayeganpour, A., Brocks, D. R., Lavasanifar, A., and Samuel, J. (2007). High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin. Biomed. Chromatography 21, 546–552. doi: 10.1002/bmc.795 Madhusudana Rao, K., Krishna Rao, K. S., Ramanjaneyulu, G., and Ha, C. S. (2015). Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery. Int. J. Pharm. 478, 788–795. doi: 10.1016/j.ijpharm.2014.12.001 Mahady, G. B., Pendland, S., Yun, G., and Lu, Z. (2002). Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res. 22, 4179–4181. Mai, Z., Chen, J., He, T., Hu, Y., Dong, X., Zhang, H., et al. (2017). Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Adv. 7, 1724–1734. doi: 10.1039/C6RA25314H Maiti, P., Paladugu, L., and Dunbar, G. L. (2018). Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5xFAD mouse model of Alzheimer’s disease. BMC Neurosci. 19, 7. doi: 10.1186/s12868-018-0406-3 Mangalathillam, S., Rejinold, N. S., Nair, A., Lakshmanan, V.-K., Nair, S. V., and Jayakumar, R. (2012). Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale 4, 239–250. doi: 10.1039/ C1NR11271F Manju, S., and Sreenivasan, K. (2011). Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J. Colloid Interface Sci. 359, 318–325. doi: 10.1016/j.jcis.2011.03.071 Masoule, S. F., Pourhajibagher, M., Safari, J., and Khoobi, M. (2019). Base-free green synthesis of copper (II) oxide nanoparticles using highly cross-linked poly (curcumin) nanospheres: synergistically improved antimicrobial activity. Res. Chem. Intermed. 45, 4449–4462. doi: 10.1007/s11164-019-03841-0 Mathew, A., Fukuda, T., Nagaoka, Y., Hasumura, T., Morimoto, H., Yoshida, Y., et al. (2012). Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PloS One 7, e32616. doi: 10.1371/journal.pone.0032616 Menon, V. P., and Sudheer, A. R. (2007). “Antioxidant and anti-inflammatory properties of curcumin,” in The molecular targets and therapeutic uses of curcumin in health and disease. Eds. B. B. Aggarwal, Y.-J. Surh and S. Shishodia (Boston, MA: Springer), 105–125. Merrell, J. G., Mclaughlin, S. W., Tie, L., Laurencin, C. T., Chen, A. F., and Nair, L. S. (2009). Curcumin-loaded poly (ε-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol. 36, 1149–1156. doi: 10.1111/j.1440-1681.2009.05216.x Miłobȩdzka, J. V., Kostanecki, S., and Lampe, V. (1910). Zur kenntnis des curcumins. Berichte Der Deutschen Chemischen Gesellschaft 43, 2163–2170. Milano, F., Mari, L., Van De Luijtgaarden, W., Parikh, K., Calpe, S., and Krishnadath, K. (2013). Nano-curcumin inhibits proliferation of esophageal adenocarcinoma cells and enhances the T cell mediated immune response. Front. Oncol. 3, 137. doi: 10.3389/fonc.2013.00137 Mosǒvská,S.,Petáková,P.,Kaliňák,M.,andMikulajová,A.(2016).Antioxidant properties of curcuminoids isolated from Curcuma longa L. Acta Chimica Slovaca 9, 130–135. doi: 10.1515/acs-2016-0022 Moballegh Nasery, M., Abadi, B., Poormoghadam, D., Zarrabi, A., Keyhanvar, P., Khanbabaei, H., et al. (2020). Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules 25, 689. doi: 10.3390/molecules25030689 Moghaddasi, F., Housaindokht, M. R., Darroudi, M., Bozorgmehr, M. R., and Sadeghi, A. (2018). Synthesis of nanocurcumin using black pepper oil by O/W Nanoemulsion Technique and investigation of their biological activities. LWT 92, 92–100. doi: 10.1016/j.lwt.2018.02.023 Mohanty, C., and Sahoo, S. K. (2010). The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 31, 6597–6611. doi: 10.1016/j.biomaterials.2010.04.062 Mohanty, C., Das, M., and Sahoo, S. K. (2012). Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol. Pharmaceut. 9, 2801–2811. doi: 10.1021/mp300075u Muangnoi, C., Jithavech, P., Ratnatilaka Na Bhuket, P., Supasena, W., Wichitnithad, W., Towiwat, P., et al. (2018). A curcumin-diglutaric acid conjugated prodrug with improved water solubility and antinociceptive properties compared to curcumin. Biosci. Biotechnol Biochem. 82, 1301– 1308. doi: 10.1080/09168451.2018.1462694 Mukerjee, A., and Vishwanatha, J. K. (2009). Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res. 29, 3867–3875. Mulik, R., Mahadik, K., and Paradkar, A. (2009). Development of curcuminoids loaded poly (butyl) cyanoacrylate nanoparticles: physicochemical characterization and stability study. Eur. J. Pharmaceut. Sci. 37, 395–404. doi: 10.1016/j.ejps.2009.03.009 Muller, R. H., and Keck, C. M. (2004). Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol. 113, 151–170. doi: 10.1016/j.jbiotec.2004.06.007 Mythri, R. B., Jagatha, B., Pradhan, N., Andersen, J., and Bharath, M. S. (2007). Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid. Redox Signaling 9, 399–408. doi: 10.1089/ ars.2006.1479 Nabavi, S. F., Daglia, M., Moghaddam, A. H., Habtemariam, S., and Nabavi, S. M. (2014). Curcumin and liver disease: from chemistry to medicine. Compr. Rev. Food Sci. Food Saf. 13, 62–77. doi: 10.1111/1541-4337.12047 Nabih Maria, D. R., Mishra, S., Wang, L., Helmy Abd-Elgawad, A.-E., Abd-Elazeem Soliman, O., Salah El-Dahan, M., et al. (2017). Water-soluble complex of curcumin with cyclodextrins: enhanced physical properties for ocular drug delivery. Curr. Drug Delivery 14, 875–886. doi: 10.2174/1567201813666160808111209 Nahar, P. P., Slitt, A. L., and Seeram, N. P. (2015). Anti-inflammatory effects of novel standardized solid lipid curcumin formulations. J. Med. Food 18, 786– 792. doi: 10.1089/jmf.2014.0053 Naksuriya, O., Okonogi, S., Schiffelers, R. M., and Hennink, W. E. (2014). Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35, 3365–3383. doi: 10.1016/j.biomaterials.2013.12.090 Nambiar, S., Osei, E., Fleck, A., Darko, J., Mutsaers, A. J., and Wettig, S. (2018). Synthesis of curcumin-functionalized gold nanoparticles and cytotoxicity studies in human prostate cancer cell line. Appl. Nanosci. 8, 347–357. doi: 10.1007/s13204-018-0728-6 Naseri, S., Darroudi, M., Aryan, E., Gholoobi, A., Rahimi, H. R., Ketabi, K., et al. (2017). The Antiviral Effects of Curcumin Nanomicelles on the Attachment and Entry of Hepatitis C Virus. Iranian J. Virol. 11, 29–35. Frontiers in Pharmacology | www.frontiersin.org 21 May 2020 | Volume 11 | Article 487

PDF Image | Nanocurcumin Promising Candidate for Therapeutic Applications

nanocurcumin-promising-candidate-therapeutic-applications-021

PDF Search Title:

Nanocurcumin Promising Candidate for Therapeutic Applications

Original File Name Searched:

fphar-11-00487.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP