logo

Nanocurcumin Promising Candidate for Therapeutic Applications

PDF Publication Title:

Nanocurcumin Promising Candidate for Therapeutic Applications ( nanocurcumin-promising-candidate-therapeutic-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 022

Karthikeyan et al. Nanocurcumin: A Promising Candidate for Therapeutic Applications Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., and Walters, M. A. (2017). The essential medicinal chemistry of curcumin: miniperspective. J. Med. Chem. 60, 1620–1637. doi: 10.1021/acs.jmedchem.6b00975 Ng, A. P. P., Chng, W. J., and Khan, M. (2011). Curcumin sensitizes acute promyelocytic leukemia cells to unfolded protein response–induced apoptosis by blocking the loss of misfolded N-CoR protein. Mol. Cancer Res. 9, 878–888. doi: 10.1158/1541-7786.MCR-10-0545 No, D. S., Algburi, A., Huynh, P., Moret, A., Ringard, M., Comito, N., et al. (2017). Antimicrobial efficacy of curcumin nanoparticles against Listeria monocytogenes is mediated by surface charge. J. Food Saf. 37, e12353. doi: 10.1111/jfs.12353 Ntoutoume, N, G.M.N., Granet, R., Mbakidi, J. P., Brégier, F., Léger, D. Y., Fidanzi-Dugas, C., et al. (2016). Development of curcumin–cyclodextrin/ cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorg. Med. Chem. Lett. 26, 941–945. doi: 10.1016/j.bmcl.2015.12.060 Oguz, O. A., Ozgul, M., and Aydin, M. (2016). Nanomicelles for the treatment of cancer. WO Patent No 2016167730A1. Ohno, M., Sametsky, E. A., Younkin, L. H., Oakley, H., Younkin, S. G., Citron, M., et al. (2004). BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41, 27–33. doi: 10.1016/S0896-6273(03)00810-9 Panahi, Y., Alishiri, G. H., Parvin, S., and Sahebkar, A. (2016). Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J. Dietary Suppl. 13, 209–220. doi: 10.3109/ 19390211.2015.1008611 Paramera, E. I., Konteles, S. J., and Karathanos, V. T. (2011a). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem. 125, 892–902. doi: 10.1016/j.foodchem.2010.09.063 Paramera, E. I., Konteles, S. J., and Karathanos, V. T. (2011b). Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, b- cyclodextrin and modified starch. Food Chem. 125, 913–922. doi: 10.1016/ j.foodchem.2010.09.071 Pathak, Y., and Tran, H. T. (2012). Nanoemulsions Containing Antioxidants And Other Health-Promoting Compounds. United States Patent Number 20120052126A1. Patil, T., and Srinivasan, M. (1971). Hypocholesteremic effect of curcumin in induced hypercholesteremic rats. Indian J. Exp. Biol. 9, 167–169. Pattayil, A. J., and Jayaprabha, K. N. (2013). Curcumin coated magnetite nanoparticles for biomedical applications. WO Patent No 2013108270A1. Paulraj, F., Abas, F., H Lajis, N., Othman, I., and Naidu, R. (2019). Molecular Pathways Modulated by Curcumin Analogue, Diarylpentanoids in Cancer. Biomolecules 9, 270. doi: 10.3390/biom9070270 Podaralla, S., Averineni, R., Alqahtani, M., and Perumal, O. (2012). Synthesis of novel biodegradable methoxy poly (ethylene glycol)–zein micelles for effective delivery of curcumin. Mol. Pharmaceut. 9, 2778–2786. doi: 10.1021/mp2006455 Priya, P., Raj, R. M., Vasanthakumar, V., and Raj, V. (2020). Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer. Arabian J. Chem. 13, 694–708. doi: 10.1016/j.arabjc.2017.07.010 Prokop, A., and Davidson, J. M. (2008). Nanovehicular intracellular delivery systems. J. Pharmaceut. Sci. 97, 3518–3590. doi: 10.1002/jps.21270 Rafiee, Z., Nejatian, M., Daeihamed, M., and Jafari, S. M. (2019). Application of different nanocarriers for encapsulation of curcumin. Crit. Rev. Food Sci. Nutr. 59, 3468–3497. doi: 10.1080/10408398.2018.1495174 Rai, M., Pandit, R., Gaikwad, S., Yadav, A., and Gade, A. (2015). Potential applications of curcumin and curcumin nanoparticles: from traditional therapeutics to modern nanomedicine. Nanotechnol. Rev. 4, 161–172. doi: 10.1515/ntrev-2015-0001 Rai, M., Ingle, A. P., Pandit, R., Paralikar, P., Anasane, N., and Santos, C. (2020). Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Rev. Anti-infective Ther. 18 (4), 367–379. doi: 10.1080/14787210.2020.1730815 Rajalakshmi, N., and Dhivya, S. (2018). A Review on the preparation methods of Curcumin Nanoparticles. PharmaTutor 6, 6–10. doi: 10.29161/PT.v6.i9.2018.6 Rajasekar, A. (2015). Facile synthesis of curcumin nanocrystals and validation of its antioxidant activity against circulatory toxicity in Wistar rats. J. Nanosci. Nanotechnol. 15, 4119–4125. doi: 10.1166/jnn.2015.9600 Rajasekaran, S. A. (2011). Therapeutic potential of curcumin in gastrointestinal diseases. World J. Gastrointestinal Pathophysiol. 2, 1. doi: 10.4291/wjgp.v2.i1.1 Rana, S., Bhattacharjee, J., Barick, K. C., Verma, G., Hassan, P. A., and Yakhmi, J. V. (2017). “Interfacial engineering of nanoparticles for cancer therapeutics,” in Nanostructures for Cancer Therapy. Eds. A. Ficai and A. M. Grumezescu (Amsterdam, Netherlands: Elsevier), 177–209. Ranjan, A. P., Mukerjee, A., and Vishwanatha, J. K. (2010). Solid in oil/water emulsion-diffusion-evaporation formulation for preparing curcumin-loaded PLGA nanoparticles. U. S. Patent Number 201000290982A1. Ranjan, A. P., Mukerjee, A., Vishwanatha, J. K., and Helson, L. (2014). Curcumin- er, a liposomal-PLGA sustained release nanocurcumin for minimizing QT prolongation for cancer therapy. United States patent application 14/016,056. Mar. 6, 2014. U.S Patent Number 20140065061A1. Ranjbar, A., Gholami, L., Ghasemi, H., and Kheiripour, N. (2020). Effects of nano- curcumin and curcumin on the oxidant and antioxidant system of the liver mitochondria in aluminum phosphide-induced experimental toxicity. Nanomed. J. 7, 58–64. doi: 10.22038/NMJ.2020.07.07 Rao, C. V. (2007). Regulation of COX and LOX by curcumin. Adv. Exp. Med. Biol. 595, 213–226. doi: 10.1007/978-0-387-46401-5_9 Rao, P. P., Mohamed, T., Teckwani, K., and Tin, G. (2015). Curcumin binding to beta amyloid: a computational study. Chem. Biol. Drug Design 86, 813–820. doi: 10.1111/cbdd.12552 Raveendran, R., Bhuvaneshwar, G., and Sharma, C. P. (2013). In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells. J. Biomat. Appl. 27, 811–827. doi: 10.1177/ 0885328211427473 Reddy, A. S., Lakshmi, B. A., Kim, S., and Kim, J. (2019). Synthesis and characterization of acetyl curcumin-loaded core/shell liposome nanoparticles via an electrospray process for drug delivery, and theranostic applications. Eur. J. Pharmaceut. Biopharmaceut. 142, 518–530. doi: 10.1016/j.ejpb.2019.07.024 Reeves, A., Vinogradov, S. V., Morrissey, P., Chernin, M., and Ahmed, M. M. (2015). Curcumin-encapsulating nanogels as an effective anticancer formulation for intracellular uptake. Mol. Cell. Pharmacol. 7, 25. doi: 10.4255/mcpharmacol.15.04 Rejinold, N. S., Thomas, R. G., Muthiah, M., Chennazhi, K., Manzoor, K., Park, I.- K., et al. (2015). Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF-and thermo-responsive nanoparticles. Int. J. Biol. Macromol. 74, 249–262. doi: 10.1016/j.ijbiomac.2014.11.044 Roacho-Pérez, J. A., Ruiz-Hernandez, F. G., Chapa-Gonzalez, C., Martıń ez-Rodrıǵ uez, H. G., Flores-Urquizo, I. A., Pedroza-Montoya, F. E., et al. (2020). Magnetite Nanoparticles Coated with PEG 3350-Tween 80: In Vitro Characterization Using Primary Cell Cultures. Polymers 12, 300. doi: 10.3390/polym12020300 Rogers, N. M., Stephenson, M., Kitching, A. R., Horowitz, J. D., and Coates, P. T. H. (2012). Amelioration of renal ischaemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br. J. Pharmacol. 166, 194–209. doi: 10.1111/j.1476-5381.2011.01590.x Rudramurthy, G., Swamy, M., Sinniah, U., and Ghasemzadeh, A. (2016). Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21, 836. doi: 10.3390/molecules21070836 Sahu, A., Kasoju, N., and Bora, U. (2008). Fluorescence study of the curcumin– casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 9, 2905–2912. doi: 10.1021/bm800683f Saikia, C., Das, M. K., Ramteke, A., and Maji, T. K. (2017). Controlled release of curcumin from thiolated starch-coated iron oxide magnetic nanoparticles: An in vitro evaluation. Int. J. Polym. Mater. Polym. Biomat. 66, 349–358. doi: 10.1080/00914037.2016.1217532 Santosh Kumar, K., Akhtar, F., Ray, G., and Pandey, A. K. (2010). Curcumin nanoparticles with improved bioavailability and methods of producing the same. WO Patent No 2010013224A2. Sasikumar, B. (2005). Genetic resources of Curcuma: diversity, characterization and utilization. Plant Genet. Resour. 3, 230–251. doi: 10.1079/PGR200574 Sesarman, A., Tefas, L., Sylvester, B., Licarete, E., Rauca, V., Luput, L., et al. (2018). Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells. Pharmacol. Rep. 70, 331–339. doi: 10.1016/j.pharep.2017.10.004 Sezgin Veliddin, C., and Bayraktar, O. (2018). Preparation of Curcumin- and Piperine Loaded Biopolymer Based Nano-Delivery Systems Using Electrospray / Coating Techniques. European Patent Number 3142702B1. Shaikh, J., Ankola, D., Beniwal, V., Singh, D., and Kumar, M. R. (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at Frontiers in Pharmacology | www.frontiersin.org 22 May 2020 | Volume 11 | Article 487

PDF Image | Nanocurcumin Promising Candidate for Therapeutic Applications

nanocurcumin-promising-candidate-therapeutic-applications-022

PDF Search Title:

Nanocurcumin Promising Candidate for Therapeutic Applications

Original File Name Searched:

fphar-11-00487.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP