logo

Nanomaterials beyond Graphene for Biomedical Applications

PDF Publication Title:

Nanomaterials beyond Graphene for Biomedical Applications ( nanomaterials-beyond-graphene-biomedical-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 035

J. Funct. Biomater. 2022, 13, 27 35 of 36 118. Faghihi,S.;Karimi,A.;Jamadi,M.;Imani,R.;Salarian,R.Grapheneoxide/poly(acrylicacid)/gelatinnanocompositehydrogel: Experimental and numerical validation of hyperelastic model. Mater. Sci. Eng. C 2014, 38, 299–305. 119. Lu, B.; Li, T.; Zhao, H.; Li, X.; Gao, C.; Zhang, S.; Xie, E. Graphene-based composite materials beneficial to wound healing. Nanoscale 2012, 4, 2978–2982. 120. Hasani-Sadrabadi, M.M.; Sarrion, P.; Nakatsuka, N.; Young, T.D.; Taghdiri, N.; Ansari, S.; Aghaloo, T.; Li, S.; Khademhosseini, A.; Weiss, P.S.; et al. Hierarchically patterned polydopamine-containing membranes for periodontal tissue engineering. ACS Nano 2019, 13, 3830–3838. 121. Kolanthai,E.;Sindu,P.A.;Khajuria,D.K.;Veerla,S.C.;Kuppuswamy,D.;Catalani,L.H.;Mahapatra,D.R.Grapheneoxide—A tool for the preparation of chemically crosslinking free alginate–chitosan–collagen scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces 2018, 10, 12441–12452. 122. Li, Y.; Zhang, X.; Dai, C.; Yin, Y.; Gong, L.; Pan, W.; Huang, R.; Bu, Y.; Liao, X.; Guo, K.; et al. Bioactive three-dimensional graphene oxide foam/polydimethylsiloxane/zinc silicate scaffolds with enhanced osteoinductivity for bone regeneration. ACS Biomater. Sci. Eng. 2020, 6, 3015–3025. 123. Choudhary, P.; Ramalingam, B.; Das, S.K. Fabrication of chitosan-reinforced multifunctional graphene nanocomposite as antibacterial scaffolds for hemorrhage control and wound-healing application. ACS Biomater. Sci. Eng. 2020, 6, 5911–5929. 124. Derakhshi, M.; Ashkarran, A.A.; Bahari, A.; Bonakdar, S. Shape selective silver nanostructures decorated amine-functionalized graphene: A promising antibacterial platform. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 101–109. https://doi.org/10.1016/j.colsurfa.2018.02.031. 125. Sharifi, S.; Sharifi, H.; Akbari, A.; Dohlman, C.H.; Paschalis, E.I.; Gonzalez-Andrades, M.; Kong, J.; Chodosh, J. Graphene-lined porous gelatin glycidyl methacrylate hydrogels: Implications for tissue engineering. ACS Appl. Nano Mater. 2021, 4, 12650–12662. 126. Liu, W.; Erol, O.; Gracias, D.H. 3D printing of an in situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 33267–33275. 127. Furukawa, Y.; Ishiwata, T.; Sugikawa, K.; Kokado, K.; Sada, K. Nano-and microsized cubic gel particles from cyclodextrin metal–organic frameworks. Angew. Chem. 2012, 124, 10718–10721. 128. Matlinska, M.A.; Ha, M.; Hughton, B.; Oliynyk, A.O.; Iyer, A.K.; Bernard, G.M.; Lambkin, G.; Lawrence, M.C.; Katz, M.J.; Mar, A.; et al. Alkaline earth metal–organic frameworks with tailorable ion release: A path for supporting biomineralization. ACS Appl. Mater. Interfaces 2019, 11, 32739–32745. 129. Yao,X.;Zhu,G.;Zhu,P.;Ma,J.;Chen,W.;Liu,Z.;Kong,T.OmniphobicZIF-8@Hydrogelmembranebymicrofluidic-emulsion- templating method for wound healing. Adv. Funct. Mater. 2020, 30, 1909389. https://doi.org/10.1002/adfm.201909389. 130. Pan, S.; Yin, J.; Yu, L.; Zhang, C.; Zhu, Y.; Gao, Y.; Chen, Y. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction. Adv. Sci. 2020, 7, 1901511. 131. Huang, K.; Wu, J.; Gu, Z. Black phosphorus hydrogel scaffolds enhance bone regeneration via a sustained supply of calcium- free phosphorus. ACS Appl. Mater. Interfaces 2018, 11, 2908–2916. 132. Liu, X.; Miller, A.L.; Park, S.; George, M.N.; Waletzki, B.E.; Xu, H.; Terzic, A.; Lu, L. Two-dimensional black phosphorus and graphene oxide nanosheets synergistically enhance cell proliferation and osteogenesis on 3D printed scaffolds. ACS Appl. Mater. Interfaces 2019, 11, 23558–23572. 133. Huang,X.;El-Sayed,I.H.;Qian,W.;El-Sayed,M.A.Cancercellimagingandphotothermaltherapyinthenear-infraredregion by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120. 134. Bao,X.;Yuan,Y.;Chen,J.;Zhang,B.;Li,D.;Zhou,D.;Jing,P.;Xu,G.;Wang,Y.;Holá,K.;etal.Invivotheranosticswithnear- infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci. Appl. 2018, 7, 1–11. 135. Derakhshi, M.; Ashkarran, A.A.; Bahari, A.; Bonakdar, S. Synergistic effect of shape-selective silver nanostructures decorating reduced graphene oxide nanoplatelets for enhanced cytotoxicity against breast cancer. Nanotechnology 2018, 29, 285102. https://doi.org/10.1088/1361-6528/aac011. 136. Lu, Y.; Zhang, X.; Hou, X.; Feng, M.; Cao, Z.; Liu, J. Functionalized 2d Nb2C Nanosheets for Primary and Recurrent Cancer Photothermal/Immune-Therapy in the Nir-Ii Biowindow. Nanoscale 2021, 13, 17822–17836. 137. Hao,L.;Song,H.;Zhan,Z.;Lv,Y.Multifunctionalreducedgrapheneoxide-basednanoplatformforsynergistictargetedchemo- photothermal therapy. ACS Appl. Bio Mater. 2020, 3, 5213–5222. 138. Huang, X.-W.; Wei, J.-J.; Zhang, M.-Y.; Zhang, X.-L.; Yin, X.-F.; Lu, C.-H.; Song, J.-B.; Bai, S.-M.; Yang, H.-H. Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications. ACS Appl. Mater. Interfaces 2018, 10, 35495–35502. 139. Kang, Y.; Li, Z.; Yang, Y.; Su, Z.; Ji, X.; Zhang, S. Antimonene nanosheets‐based z‐scheme heterostructure with enhanced reactive oxygen species generation and photothermal conversion efficiency for photonic therapy of cancer. Adv. Healthc. Mater. 2021, 10, 2001835. 140. Zeng, J.; Goldfeld, D.; Xia, Y. A Plasmon-Assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem. 2013, 125, 4263–4267. 141. Liu,T.;Wang,C.;Gu,X.;Gong,H.;Cheng,L.;Shi,X.;Feng,L.;Sun,B.;Liu,Z.DrugdeliverywithPEGylatedMoS2nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440. 142. Zhang,Y.;Wang,L.;Liu,L.;Lin,L.;Liu,F.;Xie,Z.;Tian,H.;Chen,X.Engineeringmetal–organicframeworksforphotoacoustic imaging-guided chemo-/photothermal combinational tumor therapy. ACS Appl. Mater. Interfaces 2018, 10, 41035–41045.

PDF Image | Nanomaterials beyond Graphene for Biomedical Applications

nanomaterials-beyond-graphene-biomedical-applications-035

PDF Search Title:

Nanomaterials beyond Graphene for Biomedical Applications

Original File Name Searched:

jfb-13-00027.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP