logo

Nanomaterials beyond Graphene for Biomedical Applications

PDF Publication Title:

Nanomaterials beyond Graphene for Biomedical Applications ( nanomaterials-beyond-graphene-biomedical-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 036

J. Funct. Biomater. 2022, 13, 27 36 of 36 143. Ashkarran, A.A.; Swann, J.; Hollis, L.; Mahmoudi, M. The file drawer problem in nanomedicine. Trends Biotechnol. 2021, 39, 425–427. https://doi.org/10.1016/j.tibtech.2021.01.009. 144. Liu, Y.; Zhu, S.; Gu, Z.; Chen, C.; Zhao, Y. Toxicity of manufactured nanomaterials. Particuology 2021, 69, 31–48. 145. Rhazouani,A.;Gamrani,H.;ElAchaby,M.;Aziz,K.;Gebrati,L.;Uddin,M.S.;AZIZ,F.Synthesisandtoxicityofgrapheneoxide nanoparticles: A literature review of in vitro and in vivo studies. BioMed Res. Int. 2021, 2021, 5518999. 146. Jayakumar, A.; Surendranath, A.; Mohanan, P. 2D materials for next generation healthcare applications. Int. J. Pharm. 2018, 551, 309–321. 147. Duch,M.C.;Budinger,G.S.;Liang,Y.T.;Soberanes,S.;Urich,D.;Chiarella,S.E.;Campochiaro,L.A.;Gonzalez,A.;Chandel,N.S.; Hersam, M.C. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011, 11, 5201–5207. 148. Bussy,C.;Ali-Boucetta,H.;Kostarelos,K.Safetyconsiderationsforgraphene:Lessonslearntfromcarbonnanotubes.Acc.Chem. Res. 2013, 46, 692–701. 149. Li, R.; Guiney, L.M.; Chang, C.H.; Mansukhani, N.D.; Ji, Z.; Wang, X.; Liao, Y.-P.; Jiang, W.; Sun, B.; Hersam, M.C. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano 2018, 12, 1390–1402. 150. Kalantar-zadeh, K.; Ou, J.Z.; Daeneke, T.; Strano, M.S.; Pumera, M.; Gras, S.L. Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 2015, 25, 5086–5099. 151. Li, M.; Luo, Z.; Zhao, Y. Recent advancements in 2D nanomaterials for cancer therapy. Sci. China Chem. 2018, 61, 1214–1226. 152. Lin, H.; Chen, Y.; Shi, J. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. 2018, 5, 1800518. 153. Lin,H.;Wang,X.;Yu,L.;Chen,Y.;Shi,J.Two-dimensionalultrathinMXeneceramicnanosheetsforphotothermalconversion. Nano Lett. 2017, 17, 384–391. 154. Chen, H.; Liu, T.; Su, Z.; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3, 74–89. https://doi.org/10.1039/c7nh00158d. 155. Han,X.;Jing,X.;Yang,D.;Lin,H.;Wang,Z.;Ran,H.;Li,P.;Chen,Y.Therapeuticmesoporeconstructionon2DNb2CMXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 2018, 8, 4491–4508. https://doi.org/10.7150/thno.26291.

PDF Image | Nanomaterials beyond Graphene for Biomedical Applications

nanomaterials-beyond-graphene-biomedical-applications-036

PDF Search Title:

Nanomaterials beyond Graphene for Biomedical Applications

Original File Name Searched:

jfb-13-00027.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP