logo

EPA CHP Technologies Combustion Turbines Section 4

PDF Publication Title:

EPA CHP Technologies Combustion Turbines Section 4 ( epa-chp-technologies-combustion-turbines-section-4 )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 015

boiler makes up 45 percent and the prep yard, electrostatic precipitator, and other equipment each adding about 15 percent.77 Engineering and construction add 70 percent to equipment costs. The cost of complete solid fuel CHP plants varies with many factors—fuels handling, pollution control equipment and boiler cost are major cost items. Because of both the size of such plants and the diverse sources of the components, solid fuel cogeneration plants invariably involve extensive system engineering and field labor during construction. Typical complete plant costs can be over $5,000/kW, with little generalization except that for the same fuel and configuration, costs per kW of capacity generally increase as size decreases. While the overall cost of plants with a given steam output would be similar, the amount of steam extracted for process use, and thus not available for power generation, has a significant effect on the costs quoted in $/kW of electricity out. Steam turbine costs exhibit a modest extent of irregularity, as steam turbines are made in sizes with finite steps between the sizes. The cost of the turbine is generally the same for the upper and lower limit of the steam flowing through it, so step-like behavior is sometimes seen in steam turbine prices. Since they come in specific size increments, a steam turbine that is used at the upper end of its range of power capability costs less per kW generated than one that is used at the lower end of its capability. Additionally, raw material cost, local labor rates, delivery times, availability of existing major components, and similar business conditions can affect steam turbine pricing. Often steam turbines are sold to fit into an existing plant. In some of these applications, the specifications, mass flow, pressure, temperature and backpressure or extraction conditions are customized and therefore do not expose themselves to large competition. These somewhat unique machines may be more expensive per kilowatt than other machines that are more generalized, and therefore face greater competition. This is the case for three reasons: 1) a greater amount of custom engineering and manufacturing setup may be required; 2) there is less potential for sales of duplicate or similar units; and 3) there are fewer competitive bidders. The truly competitive products are the “off- the-rack” type machines, while “custom” machines are naturally more expensive. Because of the relatively high cost of the system, high annual capacity factors are required to enable a reasonable recovery of invested capital. However, retrofit applications of steam turbines into existing boiler/steam systems can be cost competitive options for a wide variety of users depending on the pressure and temperature of the steam exiting the boiler, the thermal needs of the site, and the condition of the existing boiler and steam system. In such situations, the decision is based only on the added capital cost of the steam turbine, its generator, controls and electrical interconnection, with the balance of plant already in place. Similarly, many facilities that are faced with replacement or upgrades of existing boilers and steam systems often consider the addition of steam turbines, especially if steam requirements are relatively large compared to power needs within the facility. In general, steam turbine applications are driven by balancing lower cost fuel or avoided disposal costs for the waste fuel, with the high capital cost and (preferably high) annual capacity factor for the steam 77 “Cogeneration and Small Power Production Manual,” Scott Spiewak and Larry Weiss, 1997. Data for a 32.3 MW multi-fuel fired, 1,250 psig, 900 °F, 50 psig backpressure steam turbine used in an industrial cogeneration plant. Catalog of CHP Technologies 4–13 Steam Turbines

PDF Image | EPA CHP Technologies Combustion Turbines Section 4

epa-chp-technologies-combustion-turbines-section-4-015

PDF Search Title:

EPA CHP Technologies Combustion Turbines Section 4

Original File Name Searched:

catalog_of_chp_technologies_section_4._technology_characterization_-_steam_turbines.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP