Fundamentals of Electric Propulsion: Ion and Hall Thrusters

PDF Publication Title:

Fundamentals of Electric Propulsion: Ion and Hall Thrusters ( fundamentals-electric-propulsion-ion-and-hall-thrusters )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 016

Introduction 3 the first ion thruster system intended for north–south station keeping on the communications satellite Engineering Test Satellite (ETS) VI in 1995 [16]. Although a launch vehicle failure did not permit station keeping by this system, the ion thrusters were successfully operated in space. The commercial use of ion thrusters in the United States started in 1997 with the launch of a Hughes Xenon Ion Propulsion System (XIPS) [17], and the first NASA deep-space mission using the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) ion thruster was launched in 1998 on Deep Space 1 [18]. Since then, Hughes/Boeing launched their second-generation 25-cm XIPS ion thruster system [19] in 2000 for station-keeping applications on the high-power 702 communications satellite [20]. The Japanese have successfully used ion thrusters to provide the prime propulsion for the Hayabusa asteroid sample return mission [21], and the European Space Agency (ESA) has used Snecma’s PPS-1350-G Hall thruster on its SMART-1 mission to the moon [22]. The Russians have been steadily launching communications satellites with Hall thrusters aboard and will continue to use these devices for future station- keeping applications [15]. The first commercial use of Hall thrusters by a U.S. spacecraft manufacturer was in 2004 on Space Systems Loral’s MBSAT, which used the Fakel SPT-100 [23]. Additional ion and Hall thruster launches are planned in the U.S. in the near future using thrusters produced by commercial vendors [24–26]. In the past 20 years, electric propulsion use in spacecraft has grown steadily worldwide, and advanced electric thrusters have emerged over that time in several scientific missions and as an attractive alternative to chemical thrusters for station-keeping applications in geosynchronous communication satellites. Rapid growth has occurred in the last 10 years in the use of ion thrusters and Hall thrusters in communications satellites to reduce the propellant mass for station keeping and orbit insertion. The U.S. and the Russians have now each flown well over a hundred thrusters in communications satellites, and will continue to launch more ion and Hall thrusters in the future. The use of these technologies for primary propulsion in deep-space scientific applications has also been increasing over the past 10 years. There are many planned launches of new communications satellites and scientific missions that use ion and Hall thrusters in the coming years as the acceptance of the reliability and cost benefits of these systems grows. 1.2 Electric Thruster Types Electric thrusters are generally described in terms of the acceleration method used to produce the thrust. These methods can be easily separated into three categories: electrothermal, electrostatic and electromagnetic. Common EP thruster types are described in the following.

PDF Image | Fundamentals of Electric Propulsion: Ion and Hall Thrusters

PDF Search Title:

Fundamentals of Electric Propulsion: Ion and Hall Thrusters

Original File Name Searched:

Goebel__cmprsd_opt.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)