logo

GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS

PDF Publication Title:

GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS ( gas-turbines-in-simple-cycle-combined-cycle-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

learned in one sector of industry on gas turbine metallurgy and operating systems, such as controls or condition monitoring, can be applied in some way, to other gas turbine applications. The History of the Gas Turbine The development of the gas turbine took place in several countries. Several different schools of thought and contributory designs led up to Frank Whittle’s 1941 gas turbine flight. Despite the fact that NASA’s development budget now trickles down to feed the improvement of flight, land based and marine engines, the world’s first jet engine owed much to early private aircraft engine pioneers and some lower profile land-based developments. The development of the gas turbine is a source of great pride to many engineers world wide and, in some cases takes on either industry sector fervor (for instance the aviation versus land based groups) or claims that are tinged with pride with one’s national roots. People from these various sectors and subsectors can therefore get selective in their reporting. So for understanding the history of the gas turbine, one would have to read several different papers and select material written by personnel from the aviation, and land-based sectors. At that point, one can “fill in the gaps”. What follows therefore are two different accounts of the gas turbine’s development. Neither of them is wrong. The first of these presents an aircraft engine development perspective. * * Reference: “The History of Aircraft Gas Turbine Development in the United States”, St. Peter, J., Published IGTI, ASME, 1999. Attempts to develop gas turbines were first undertaken in the early 1900’s, with pioneering work done in Germany. The most successful early gas turbines were built by Holzwarth, who developed a series of models between 1908 and 1933. The first industrial application of a gas turbine was installed in a steel works in Hamborn, Germany, in 1933. In 1939 a gas turbine was installed in a power plant in Neuchâtel. 1931 U.S. army awards GE a turbine-powered turbosupercharger development contract 1935 U.S. Army, Northrop, TWA, and GE combine to test fly a Northrop Gamma at 37,000 feet from Kansas City to Dayton. This led to a production contract for GE to build 230 units of the “Type B” supercharger and led to establishment of the GE Supercharger Department in Lynn, Massachusetts (later the site of the I-A development based on the Whittle engine). 1938 Wright Aeronautical Corporation designs its own vaned superchargers for its own engines, although the superchargers were manufactured for Wright by GE. 1940 NACA joins with Wright, Allison and P&W to standardize turbo supercharger testing techniques. 1.1 Simple and Combined Cycles 1925 R.E. Lasley of Allis-Chalmers receives the first of several patents on gas turbines. Around 1930 he forms the Lasley Turbine Motor Company in Waukegan, IL. with the goal of producing a gas turbine for aircraft propulsion. 1934 U.S. Army personnel from Wright Field visit Lasley’s shop and inspected his hardware and the engine which he had filmed in operation earlier that year. However, neither the Army nor Navy would fund Lasley. 1939 GE studies gas turbine aircraft propulsion options and concludes the turbojet is preferable to the turboprop. Note, however, that two years later they changed their minds and proposed a turboprop to the Durand Committee. 1941 GE Steam Turbine Division (Schenectady) participates in the Durand Special Committee on Jet Propulsion and proposes a turboprop, designated the TG-100 (later the T31), which ran successfully in May 1943 under Army sponsorship. 1941 GE Turbo Supercharger Division (Lynn, Massachusetts) receives the Whittle W.1.X engine and drawings for the W.2.B improved version. A top secret effort begins to build an improved version, known as the I-A, for flight test in the Bell P-59. 1941 Durand Committee also awards Navy contracts to Allis-Chalmers and Westinghouse. The Westinghouse W19, a small booster turbojet, resulted from this but Allis-Chalmers dropped out of the “gas turbine race” in 1943. 13

PDF Image | GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS

gas-turbines-in-simple-cycle-combined-cycle-applications-013

PDF Search Title:

GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS

Original File Name Searched:

gas-turbine-combined-cycle.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP