GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS

PDF Publication Title:

GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS ( gas-turbines-in-simple-cycle-combined-cycle-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 020

20 determining the power necessary to create the pressure rise of a given airflow. This pressure rise will in turn affect the temperature difference between the compressor inlet and outlet. As mentioned previously, the main types of compressor design are centrifugal and axial flow. The axial-centrifugal-flow compressor is a combination of both and operates with a combination of their characteristics. It is a less common design. Centrifugal-flow compressor As the rotor turns, air is drawn into the blades near the center of the front rotor stage. Centrifugal force accelerates this air as it moves outward from the axis of rotation towards the edge of the rotor. It is then forced through the diffuser section at high velocity (high kinetic energy). A pressure rise results when the air slows in the diffuser (some velocity energy becomes pressure energy). One centrifugal compressor stage is capable of a relatively high compression ratio per stage. It is not practical to use on larger engines because of its size and weight, relative to axial stages. Because of the high tip speeds it develops, the centrifugal compressor is most used on smaller engines where simplicity, flexibility of operation, and ruggedness outweigh its characteristics of less overall pressure ratio than that developed by an axial compressor. Axial-flow compressor The air is compressed, in a direction parallel to the longitudinal axis of the engine. Axial flow compressors consist of several stages that collectively create high compression ratios with high efficiencies. The streamlined shape of this type of compressor make is suitable for use on high speed (ram jet) aircraft. Its design is less rugged than that of the centrifugal compressor though, making it more susceptible to foreign object damage (FOD). The required efficiency and power rating then mean that the design parameters that govern its design, such as rotor dynamics characteristics, clearances and fits, also make it more expensive to manufacture. With the rising cost of fuel, most gas turbine designers use axial compressors, as features such as power delivered per unit weight of the gas turbine outweigh initial manufacture costs. Axial-centrifugal-flow compressor The axial-centrifugal-flow compressor, also called the dual compressor, is a combination of the two types. Its operating advantages and characteristics are also a combination of both rotor types. It is useful is specialized application designs, such as those for US Army helicopters. Typically the compressor is five- to seven-stage axial-flow compressor and one centrifugal-flow compressor. The compressors are mounted on the same shaft and therefore turn in the same direction and at the same speed. The centrifugal compressor is situated aft of the axial compressor stages. Most high performance gas turbines today also have inlet guide vanes (IGVs) and/ or variable inlet guide vanes (VIGVs) at the compressor inlet. This is to ensure that the air flow hitting the rotor blades does so at an acceptable angle of attack that does not cause the blade to stall. If we consider a cross section through the wing of an aircraft, we note that the section is similar in shape (if not size) to that of an airfoil in a gas turbine. All airfoils provide lift by producing a lower pressure on the convex (suction) side of the airfoil than on the concave (pressure) side. With any airfoil, lift increases with an increasing angle of attack, but only up to a critical angle. Beyond this critical angle of attack, lift falls off rapidly. This is due mostly to the separation of the airflow from the suction surface of the airfoil. In simpler terms, we know that when the cushion of air under the aircraft wing is reduced to a certain level, the wing has inadequate lift. It (and the aircraft) tend to drop from their existing level. The airfoils in a gas turbine can stall in exactly the same way, one blade at a time. If a whole row of blades stalls, we have a condition called rotating stall, at which point surge occurs. Surge causes a rotor to go back on itself, in an attempt to regain the lift under the airfoil. In flight, the pilot then pushes the nose down to recover from stall, as this then restores the air cushion under the wing.

PDF Image | GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS

PDF Search Title:

GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS

Original File Name Searched:

gas-turbine-combined-cycle.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)