copper-based magnetic nanocatalyst for the fixation of carbon dioxide

PDF Publication Title:

copper-based magnetic nanocatalyst for the fixation of carbon dioxide ( copper-based-magnetic-nanocatalyst-fixation-carbon-dioxide )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

www.nature.com/scientificreports/ 13. Trost, B. M. On inventing reactions for atom economy. Acc. Chem. Res. 35, 695–705 (2002). 14. Clements, J. H. Reactive applications of cyclic alkylene carbonates. Ind. Eng. Chem. Res. 42, 663–674 (2003). 15. Patel, M. et al. Sch 31828, a novel antibiotic from a Microbispora sp.: taxonomy, fermentation, isolation and biological properties. J. Antibiot. 41, 794–797 (1988). 16. Yoshida, M. & Ihara, M. Novel methodologies for the synthesis of cyclic carbonates. Chem. - Eur. J. 10, 2886–2893 (2004). 17. Desens, W. & Werner, T. Convergent activation concept for CO2 fixation in carbonates. Adv. Synth. Catal. 358, 622–630 (2016). 18. Ema, T. et al. Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catal. Sci. Technol. 5, 2314–2321 (2015). 19. Elmas, S. et al. Highly active Cr(III) catalysts for the reaction of CO2 with epoxides. Catal. Sci. Technol. 4, 1652–1657 (2014). 20. Martin, C. et al. Easily accessible bifunctional Zn(salpyr) catalysts for the formation of organic carbonates. Catal. Sci. Technol. 4, 1615–1621 (2014). 21. Taherimehr, M., Al-Amsyar, S. M., Whiteoak, C. J., Kleij, A. W. & Pescarmona, P. P. High activity and switchable selectivity in the synthesis of cyclic and polymeric cyclohexene carbonates with iron amino triphenolate catalysts. Green Chem. 15, 3083–3090 (2013). 22. Wang, J.-Q., Dong, K., Cheng, W.-G., Sun, J. & Zhang, S.-J. Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides. Catal. Sci. Technol. 2, 1480–1484 (2012). 23. Whiteoak, C. J., Martin, E., Belmonte, M. M., Benet‐Buchholz, J. & Kleij, A. W. An efficient iron catalyst for the synthesis of five‐ and six‐membered organic carbonates under mild conditions. Adv. Synth. Catal. 354, 469–476 (2012). 24. Zhou, H., Wang, Y.-M., Zhang, W.-Z., Qu, J.-P. & Lu, X.-B. N-heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide. Green Chem. 13, 644–650 (2011). 25. Paddock, R. L., Hiyama, Y., McKay, J. M. & Nguyen, S. T. Co(III) porphyrin/DMAP: an efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett. 45, 2023–2026 (2004). 26. Ema, T., Miyazaki, Y., Shimonishi, J. & Maeda, C. & Hasegawa, J.-y. Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: structural optimization and mechanistic study. J. Am. Chem. Soc. 136, 15270–15279 (2014). 27. Jung, Y. et al. Rh(0)/Rh(III) core–shell nanoparticles as heterogeneous catalysts for cyclic carbonate synthesis. Chem. Commun. 53, 384–387 (2017). 28. Liu, M. et al. Design of bifunctional NH3I-Zn/SBA-15 single-component heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. J. Mol. Catal. A: Chem. 418, 78–85 (2016). 29. Bhin, K. M. et al. Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 17, 112–118 (2017). 30. Saptal, V. B. & Bhanage, B. M. Bifunctional ionic liquids derived from biorenewable sources as sustainable catalysts for fixation of carbon dioxide. ChemSusChem 10, 1145–1151 (2017). 31. Clegg, W., Harrington, R. W., North, M. & Pasquale, R. Cyclic carbonate synthesis catalysed by bimetallic aluminium–salen complexes. Chem. - Eur. J. 16, 6828–6843 (2010). 32. Yang, Z.-Z., Zhao, Y.-N., He, L.-N., Gao, J. & Yin, Z.-S. Highly efficient conversion of carbon dioxide catalyzed by polyethylene glycol-functionalized basic ionic liquids. Green Chem. 14, 519–527 (2012). 33. Wang, L., Zhang, G., Kodama, K. & Hirose, T. An efficient metal- and solvent-free organocatalytic system for chemical fixation of CO2 into cyclic carbonates under mild conditions. Green Chem. 18, 1229–1233 (2016). 34. Motokura, K., Itagaki, S., Iwasawa, Y., Miyaji, A. & Baba, T. Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide. Green Chem. 11, 1876–1880 (2009). 35. Han, Y.-H., Zhou, Z.-Y., Tian, C.-B. & Du, S.-W. A dual-walled cage MOF as an efficient heterogeneous catalyst for the conversion of CO2 under mild and co-catalyst free conditions. Green Chem. 18, 4086–4091 (2016). 36. Dai, Z. et al. Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. J. Catal. 338, 202–209 (2016). 37. Talapaneni, S. N. et al. Nanoporous polymers incorporating sterically confined N-heterocyclic carbenes for simultaneous CO2 capture and conversion at ambient pressure. Chem. Mater. 27, 6818–6826 (2015). 38. Zheng, J., Wu, M., Jiang, F., Su, W. & Hong, M. Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses. Chem. Sci. 6, 3466–3470 (2015). 39. Gao, W. Y. et al. Crystal engineering of an nbo topology metal–organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem., Int. Ed. 53, 2615–2619 (2014). 40. Saptal, V., Shinde, D. B., Banerjee, R. & Bhanage, B. M. State-of-the-art catechol porphyrin COF catalyst for chemical fixation of carbon dioxide via cyclic carbonates and oxazolidinones. Catal. Sci. Technol. 6, 6152–6158 (2016). 41. Liu, X. et al. Cooperative calcium-based catalysis with 1,8-diazabicyclo[5.4. 0]-undec-7-ene for the cycloaddition of epoxides with CO2 at atmospheric pressure. Green Chem. 18, 2871–2876 (2016). 42. Ghosh, A. et al. Cycloaddition of CO2 to epoxides using a highly active Co(III) complex of tetraamidomacrocyclic ligand. Catal. Lett. 137, 1–7 (2010). 43. Li, Y.-N., He, L.-N., Lang, X.-D., Liu, X.-F. & Zhang, S. An integrated process of CO2 capture and in situ hydrogenation to formate using a tunable ethoxyl-functionalized amidine and Rh/bisphosphine system. RSC Adv. 4, 49995–50002 (2014). 44. Lian, C. et al. Solvent-free selective hydrogenation of chloronitrobenzene to chloroaniline over a robust Pt/Fe3O4 catalyst. Chem. Commun. 48, 3124–3126 (2012). 45. Teng, Q. & Huynh, H. V. Controlled access to a heterometallic N-heterocyclic carbene helicate. Chem. Commun. 51, 1248–1251 (2015). 46. Gawande, M. B., Branco, P. S. & Varma, R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 42, 3371–3393 (2013). 47. Yan, J.-M., Zhang, X.-B., Akita, T., Haruta, M. & Xu, Q. One-step seeding growth of magnetically recyclable Au@Co core−shell nanoparticles: Highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 132, 5326–5327 (2010). 48. Yang, B. et al. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Res. 9, 1879–1890 (2016). 49. Gao, D. et al. Supported single Au(III) ion catalysts for high performance in the reactions of 1,3-dicarbonyls with alcohols. Nano Res. 9, 985–995 (2016). 50. Decan, M. R., Impellizzeri, S., Marin, M. L. & Scaiano, J. C. Copper nanoparticle heterogeneous catalytic ‘click’ cycloaddition confirmed by single-molecule spectroscopy. Nat. Commun. 5, 4612 (2014). 51. Shokouhimehr, M., Piao, Y., Kim, J., Jang, Y. & Hyeon, T. A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew. Chem., Int. Ed. 46, 7039–7043 (2007). 52. Yuan, B., Pan, Y., Li, Y., Yin, B. & Jiang, H. A highly active heterogeneous palladium catalyst for the Suzuki–Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew. Chem., Int. Ed. 49, 4054–4058 (2010). 53. Pagoti, S., Surana, S., Chauhan, A., Parasar, B. & Dash, J. Reduction of organic azides to amines using reusable Fe3O4 nanoparticles in aqueous medium. Catal. Sci. Technol. 3, 584–588 (2013). SCientifiC RepoRts | (2018) 8:1901 | DOI:10.1038/s41598-018-19551-3 10

PDF Image | copper-based magnetic nanocatalyst for the fixation of carbon dioxide

PDF Search Title:

copper-based magnetic nanocatalyst for the fixation of carbon dioxide

Original File Name Searched:

s41598-018-19551-3.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)