copper-based magnetic nanocatalyst for the fixation of carbon dioxide

PDF Publication Title:

copper-based magnetic nanocatalyst for the fixation of carbon dioxide ( copper-based-magnetic-nanocatalyst-fixation-carbon-dioxide )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

www.nature.com/scientificreports/ 54. Santos, B. F. et al. C-S cross-coupling reaction using a recyclable palladium prolinate catalyst under mild and green conditions. Chemistry Select 2, 9063–9068 (2017). 55. Shylesh, S., Schünemann, V. & Thiel, W. R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 49, 3428–3459 (2010). 56. Polshettiwar, V. et al. Magnetically recoverable nanocatalysts. Chem. Rev. 111, 3036–3075 (2011). 57. Zhu, M. & Diao, G. Review on the progress in synthesis and application of magnetic carbon nanocomposites. Nanoscale 3, 2748–2767 (2011). 58. Sharma, R. K. et al. Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem. 18, 3184–3209 (2016). 59. Gawande, M. B., Monga, Y., Zboril, R. & Sharma, R. Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 288, 118–143 (2015). 60. Sharma, R., Gulati, S., Pandey, A. & Adholeya, A. Novel, efficient and recyclable silica based organic–inorganic hybrid nickel catalyst for degradation of dye pollutants in a newly designed chemical reactor. Appl. Catal., B 125, 247–258 (2012). 61. Sharma, R. K., Sharma, S., Dutta, S., Zboril, R. & Gawande, M. B. Silica-nanosphere-based organic-inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chem. 17, 3207–3230 (2015). 62. Sharma, R. K. et al. Maghemite‐copper nanocomposites: applications for ligand‐free cross‐coupling (C–O, C–S, and C–N) reactions. ChemCatChem 7, 3495–3502 (2015). 63. Sharma, R. K., Yadav, M., Gaur, R., Monga, Y. & Adholeya, A. Magnetically retrievable silica-based nickel nanocatalyst for Suzuki–Miyaura cross-coupling reaction. Catal. Sci. Technol. 5, 2728–2740 (2015). 64. Sharma, R. K. et al. Silica-based magnetic manganese nanocatalyst–applications in the oxidation of organic halides and alcohols. ACS Sustainable Chem. Eng. 4, 1123–1130 (2016). 65. Sharma, R. K. et al. Synthesis of iron oxide palladium nanoparticles and their catalytic applications for direct coupling of acyl chlorides with alkynes. ChemPlusChem 81, 1312–1319 (2016). 66. Gawande, M. B. et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811 (2016). 67. Polshettiwar, V. & Varma, R. S. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number. Org. Biomol. Chem. 7, 37–40 (2009). 68. Zhang, Z. et al. Magnetically separable polyoxometalate catalyst for the oxidation of dibenzothiophene with H2O2. J. Colloid Interface Sci. 360, 189–194 (2011). 69. Abu-Reziq, R., Alper, H., Wang, D. & Post, M. L. Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc. 128, 5279–5282 (2006). 70. Ma, D. et al. Superparamagnetic FexOy@SiO2 core−shell nanostructures: Controlled synthesis and magnetic characterization. J. Phys. Chem. C 111, 1999–2007 (2007). 71. Zhu, J. et al. A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host–guest inclusion studies. Appl. Surf. Sci. 257, 9056–9062 (2011). 72. Kooti, M. & Afshari, M. Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes. Mater. Res. Bull. 47, 3473–3478 (2012). 73. Yamaura, M. et al. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279, 210–217 (2004). 74. Baig, R. N. & Varma, R. S. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: aqueous hydration of nitriles to amides. Chem. Commun. 48, 6220–6222 (2012). 75. Zhang, P. et al. Mesoporous nitrogen-doped carbon for copper-mediated Ullmann-type C-O/-N/-S cross-coupling reactions. RSC Adv. 3, 1890–1895 (2013). 76. Bhanja, P., Das, S. K., Patra, A. K. & Bhaumik, A. Functionalized graphene oxide as an efficient adsorbent for CO2 capture and support for heterogeneous catalysis. RSC Adv. 6, 72055–72068 (2016). 77. Digigow, R. G. et al. Preparation and characterization of functional silica hybrid magnetic nanoparticles. J. Magn. Magn. Mater. 362, 72–79 (2014). 78. Ren, Y. & Shim, J. J. Efficient synthesis of cyclic carbonates by MgII/phosphine‐catalyzed coupling reactions of carbon dioxide and epoxides. ChemCatChem 5, 1344–1349 (2013). 79. Das, N. & Gomes, C. et al. A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2. Angew. Chem., Int. Ed. 51, 187–190 (2012). 80. Kayaki, Y., Yamamoto, M. & Ikariya, T. Stereoselective formation of α-alkylidene cyclic carbonates via carboxylative cyclization of propargyl alcohols in supercritical carbon dioxide. J. Org. Chem. 72, 647–649 (2007). 81. Paddock, R. L. & Nguyen, S. T. Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc. 123, 11498–11499 (2001). Acknowledgements Rashmi Gaur expresses her gratitude to the University Grant Commission, Delhi, India for the award of Senior Research Fellowship. Also, thanks are given to USIC-CLF, University of Delhi for providing instrumentation facility and Ondrej Tomanec for elemental mapping analysis. The authors acknowledge the support from the Ministry of Education, Youth and Sports of the Czech Republic (LO1305) and the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073. Author Contributions R.G. and M.Y. planned the experiments, analysis, and collection of data. A.G. helped in writing and editing of manuscript. M.B.G., R.Z. and R.K.S. supervised the research, edited the manuscript and constructive comments. All authors have read and approved the final manuscript. Additional Information Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-19551-3. Competing Interests: The authors declare that they have no competing interests. Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SCientifiC RepoRts | (2018) 8:1901 | DOI:10.1038/s41598-018-19551-3 11

PDF Image | copper-based magnetic nanocatalyst for the fixation of carbon dioxide

PDF Search Title:

copper-based magnetic nanocatalyst for the fixation of carbon dioxide

Original File Name Searched:

s41598-018-19551-3.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)