logo

Current Developments of Carbon Capture Storage

PDF Publication Title:

Current Developments of Carbon Capture Storage ( current-developments-carbon-capture-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

Energies 2021, 14, 2406 9 of 26 There are many types of adsorbents, which could be applied to CO2 capture by physical ad- sorption processes, including activated carbons, carbon fibers, zeolites [45], metal-organic frameworks [46], and organic-inorganic hybrid materials [47,48]. The adsorbent should be chosen taking into account economic and operational criteria, which are (i) high ad- sorption capacity for the target gas component, i.e., CO2, leading to the reduction of the adsorbent quantity and process equipment size; (ii) high CO2 selectivity, representing a high adsorption capacity ratio between CO2 and the other components in the stream, such as, nitrogen; (iii) fast adsorption and desorption kinetics; (iv) good physical and chemical stability during the cycles and regeneration steps; (v) be regenerable by modest pressure decrease or temperature increase, leading to the minimization of the operating energy costs. Furthermore, the adsorbent should ideally also have robust performance in the presence of moisture and other contaminants that may be present in the gas stream to treat. Then, there are essential features that should be considered for a successful operation of adsorbent material, such as composition, particle size, pore size, and pore connectivity. Depending on the regeneration method, adsorption processes can be denominated as pressure swing adsorption (PSA), temperature swing adsorption (TSA), and electrical swing adsorption (ESA) [49,50]. Cryogenic carbon capture utilizes the principle of separation based on the cooling of CO2 to low temperature. The CO2 is separated from the flue gas mixture after cooling this gas below −73.3 ◦C at atmospheric pressure. After this, CO2 is pressurized and delivered at pipeline pressure. Cryogenic separation can be applied for post-combustion processes in two different ways. In one of these methods, CO2 can be de-sublimated to solid CO2 on the heat exchangers, further heated and pressurized to obtain liquid CO2 in the recovery stage. Clodic and Younes [51] proposed this type of separation. Tuinier et al. [52] proposed another method, with the use of packed beds for de-sublimation of CO2. CO2 is recovered from the packing material by feeding a fresh gas stream to increase the temperature and enhance the concentration of the CO2 recovered from the packed bed [53]. It may be a good technique because it does not involve any additional chemicals in the separation process. However, the high compression power requirements for this method are the major disadvantage [54]. Membranes are another potential alternative to conventional solvent absorption tech- nology. The difference in physical and/or chemical interactions between gases and mem- brane materials is responsible for the CO2 separation. The method presents many advan- tages, such as reduced equipment size, lower energy requirements, simplicity in the process, among others. Nevertheless, in the post-combustion process, particularly in the CO2/N2 separation, due to the relatively low CO2 concentration and pressure, the driving force for membranes to perform appropriately is weak, making their implementation difficult [55]. Another potential technique for removing CO2 from flue gases is microalgae. Microal- gae are microscopic organisms that typically grow suspended in water and are driven by the same photosynthetic process as higher plants [56]. Microalgal cells are sunlight-driven cell factories that can convert carbon dioxide into raw materials for producing biofuels (e.g., biohydrogen, biodiesel, and bioethanol), animal food chemical feedstocks, and high-value bioactive compounds [56]. The ability of these cells to absorb CO2 can be applied as an attractive alternative for CO2 sequestration. CO2 fixation and storage via microalgae are essentially photosynthesis, transforming water and CO2 into organic compounds without extra energy addition or consumption and secondary pollution. Hydrate-based CO2 capture (HBCC) technology emerges as a potential solution for CO2 capture from gas streaming, e.g., fromCO2/N2 or from CO2/H2 of fossil fuel power plants. This technology is based on the hydrate cages formation by water molecules at high pressure and low temperature, where CO2 molecules stay enclathrated, allowing their separation. It is estimated that this technology could have a cost reduction of CO2 capture of about 45% when compared with the chemical absorption technology [57]. Recently, studies involving hydrate-base CO2 capture and storage have increased [58,59].

PDF Image | Current Developments of Carbon Capture Storage

current-developments-carbon-capture-storage-009

PDF Search Title:

Current Developments of Carbon Capture Storage

Original File Name Searched:

energies-14-02406.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP