PDF Publication Title:
Text from PDF Page: 017
ACS Sustainable Chemistry & Engineering Perspective of fine and basic chemical production. Green Chem. 2009, 11, 1826− 1831. (75) Wernet, G.; Hellweg, S.; Fischer, U.; Papadokonstantakis, S.; Hungerbühler, K. Molecular − Structure-Based Models of Chemical Inventories using Neural Networks. Environ. Sci. Technol. 2008, 42, 6717−6722. (76) Wernet, G.; Hellweg, S. K.; Hungerbühler, K. A tiered approach to estimate inventory data and impacts of chemical products and mixtures. Int. J. Life Cycle Assess. 2012, 17, 720−728. (77) Hellweg, S.; Fischer, U.; Scheringer, M.; Hungerbühler, K. Environmental assessment of chemicals: methods and application to a case study of organic solvents. Green Chem. 2004, 6, 418−427. (78) Hazard Statements. http://www.ilpi.com/msds/ref/ hstatements.html (accessed November 2017). (79) Eckelman, M. J. Life cycle inherent toxicity: a novel LCA-based algorithm for evaluating chemical synthesis pathways. Green Chem. 2016, 18, 3257−3264. (80)Jimeńez-Gonzaĺez,C.;Curzons,A.D.;Constable,D.J.C.; Cunningham, V. L. Cradle-to-Gate Life Cycle Inventory and Assessment of Pharmaceutical Compounds. Int. J. Life Cycle Assess. 2004, 9 (2), 114−121. (81)Jimeńez-Gonzaĺez,C.;Curzons,A.D.;Constable,D.J.C.; Cunningham, V. L. Expanding GSK’s solvent selection guide: application of life cycle assessment to enhance solvent selections. Clean Technol. Environ. Policy 2004, 7, 42−50. (82)Jimeńez-Gonzaĺez,C.;Constable,D.J.C.;Ponder,C.S. Evaluating the “Greenness” of chemical processes and products in the pharmaceutical industry − a green metrics primer. Chem. Soc. Rev. 2012, 41, 1485−1498. (83) Curzons, A. D.; Jimeń ez-Gonzaĺez, C.; Duncan, A. L.; Constable, D. J. C.; Cunningham, V. L. Fast Life Cycle Assessment of Synthetic Chemistry (FLASC) Tool. Int. J. Life Cycle Assess. 2007, 12 (4), 272−280. (84)Jimeńez-Gonzaĺez,C.;Overcash,M.R.Theevolutionoflife cycle assessment in pharmaceutical and chemical applications − a perspective. Green Chem. 2014, 16, 3392−3400. (85) Isoni, V.; Wong, L. I.; Khoo, H. H.; Halim, I.; Sharratt, P. Q- SA√ESS: a methodology to help solvent selection for pharmaceutical manufacture at the early process development stage. Green Chem. 2016, 18, 6564−6572. (86) Leseurre, L.; Merea, C.; Duprat de Paule, S.; Pinchart, A. Eco- footprint: a new tool for the “Made in Chimex” considered approach. Green Chem. 2014, 16, 1139−1148. (87) Communication in the Supply Chain. ECHA. https://echa. europa.eu/safety-data-sheets (accessed November 2017). (88) Geregistreerde stoffen. ECHA. https://echa.europa.eu/nl/ information-on-chemicals/registered-substances (accessed November 2017). (89) Phan, T. V. T.; Gallardo, C.; Mane, J. GREEN MOTION: a new and easy to use green chemistry metric from laboratories to industry. Green Chem. 2015, 17, 2846−2852. (90) Hossain, K. A.; Khan, F. I.; Hawboldt, K. E-Green − A Robust Risk-Based Environmental Assessment Tool for Process Industries. Ind. Eng. Chem. Res. 2007, 46, 8787−8795. (91) McElroy, C. R.; Constantinou, A.; Jones, L. C.; Summerton, L.; Clark, J. H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 2015, 17, 3111−1321. (92) Rosillo-Calle. A review of biomass energy − shortcomings and concerns. J. Chem. Technol. Biotechnol. 2016, 91, 1933−1945. (93)Saling,P.;Kicherer,A.;Dittrich-Kram̈er,B.;Wittlinger,R.; Zombik, W.; Schmidt, I.; Schrott, W.; Schmidt, S. Eco-efficiency analysis by BASF: The Method. Int. J. Life Cycle Assess. 2002, 7 (4), 203−218. (94) Saling, P.; Maisch, R.; Silvani, M.; König, N. Assessing the Environmental-Hazard Potential for Life Cycle Assessment, Eco- Efficiency and SEEbalance. Int. J. Life Cycle Assess. 2005, 10 (5), 364− 371. P (95) Landsiedel, R.; Saling, P. Assessment of Toxicological Risks for Life Cycle Assessment and Eco-efficiency Analysis. Int. J. Life Cycle Assess. 2002, 7, 261−268. (96) Shonnard, D. R.; Kicherer, A.; Saling, P. Industrial Applications Using BASF Eco-Efficiency Analysis: Perspectives in Green Engineer- ing. Environ. Sci. Technol. 2003, 37, 5340−5348. (97) Dach, R.; Song, J. J.; Roschangar, F.; Samstag, W.; Senanayake, C. H. The Eight Croteria Defining a Good Chemical Manufacturing Process. Org. Process Res. Dev. 2012, 16, 1697−1706. (98) Clark, J. H.; Farmer, T. J.; Herrero-Davila, L.; Sherwood, J. Circular economy design considerations for research and process development in the chemical sciences. Green Chem. 2016, 18, 3914− 3934. (99) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, 2011, Roadmap to a Resource Efficient Europe, COM /2011/0571 final. (100) Commoner, B. The Closing Circle: Nature, Man and Technology; Knopf: New York, 1971. (101) Sheldon, R. A. Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 2014, 16, 950−963. (102) Höfer, R.; Bigorra, J. Biomass-based green chemistry: sustainable solutions for modern economics. Green Chem. Lett. Rev. 2008, 1, 79−97. (103) Imhof, P.; van der Waal, J. C., Eds.; Catalytic Process Development for Renewable Materials; Wiley-VCH: Weinheim, 2013. (104) Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 2012, 41, 1538−1558. (105) Yang, S.-T.; El-Enshasy, H. A.; Thongchul, N. Bioprocessing Technologies Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers; Wiley: Hoboken, NJ, 2013. (106) Sousa-Aguiar, E. F.; Appel, L. G.; Costa Zonetti, P.; do Couto Fraga, A.; Azevedo Bicudo, A.; Fonseca, I. Some important catalytic challenges in the bioethanol integrated biorefinery. Catal. Today 2014, 234,13−23. (107) Tuck, C. O.; Perez, E.; Horvath, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of biomass: deriving more value from waste. Science 2012, 337, 695−699. (108) Pfaltzgraff, L. A.; De bruyn, M.; Cooper, E. C.; Budarin, V.; Clark, J. H. Food waste biomass: a resource for high-value chemicals. Green Chem. 2013, 15, 307−314. (109) Kawaguchi, H.; Hasunuma, T.; Ogino, C.; Kondo, A. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr. Opin. Biotechnol. 2016, 42, 30−39. (110) Williams, P. R. D.; Inman, D.; Aden, A.; Heath, G. A. Environmental and Sustainability Factors Associated With Next- Generation Biofuels in the U.S.: What Do We Really Know? Environ. Sci. Technol. 2009, 43, 4763−4775. (111) Duarte, L. C.; Esteves, M. P.; Carvalheiro, F.; Girio, F. M. Biotechnological valorization potential indicator for lignocellulososic materials. Biotechnol. J. 2007, 2, 1556−1563. (112) Wall-Markowski, C. A.; Kicherer, A.; Saling, P. Using Eco- Efficiency Analysis to Assess Renewable-Resource-Based Technolo- gies. Environ. Environ. Prog. 2004, 23, 329−333. (113) Saling, P. Eco-Efficiency Analysis of Biotechnological Processes. Appl. Microbiol. Biotechnol. 2005, 68, 1−8. (114) Patel, A. D.; Meesters, K.; den Uil, H.; de Jong, E.; Blok, K.; Patel, M. K. Sustainability assessment of novel chemical processes at early stage: application to biobased processes. Energy Environ. Sci. 2012, 5, 8430−8444. (115) Sugiyama, H.; Fischer, U.; Hungerbühler, K.; Hirao, M. Decision framework for chemical process design including different stages of environmental, health, and safety assessment. AIChE J. 2008, 54, 1037−1053. (116) Patel, A. D.; Meesters, K.; den Uil, H.; de Jong, E.; Worrell, E.; Patel, M. K. Early-Stage Comparative Sustainability Assessment of New Bio-based Processes. ChemSusChem 2013, 6, 1724−1736. (117) Patel, A. D.; Telalovic, S.; Bitter, J. H.; Worrell, E.; Patel, M. K. Analysis of sustainability metrics and application to the catalytic DOI: 10.1021/acssuschemeng.7b03505 ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXXPDF Image | Metrics of Green Chemistry and Sustainability
PDF Search Title:
Metrics of Green Chemistry and SustainabilityOriginal File Name Searched:
acssuschemeng.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)